MAP-i - Doctoral Programme in Computer Science

A. Ismael F. Vaz

Algoritmi R&D Centre

University of Minho

16 January 2007

Ismael Vaz (NSOS, Algoritmi, U.Minho) MAP-i - D.P. in Computer Science

Ismael Vaz (NSOS, Algoritmi, U.Minho) MAP-i - D.P. in Computer Science

- A 🖓

Contents

2 Applications and research outcome

Ismael Vaz (NSOS, Algoritmi, U.Minho) MAP-i - D.P. in Computer Science

Research areas - Semi-Infinite Programming

We are dealing with optimization problems where a finite number of variables are optimized subject to an infinite number of constraints.

Semi-Infinite Programming

$$\min_{u \in R^n} f(u)$$

s.t. $g_i(u, v) \le 0, \ i = 1, \dots, m$
 $u_{lb} \le u \le u_{ub}$
 $\forall v \in \mathcal{R} \subset R^p.$

* 🔿

4 / 11

aivaz@dps.uminho.pt

Research areas - Multi-Local Optimization

We are addressing an optimization problem where all the local (and therefore global) optima are requested.

Multi-local optimization is connected with some numerical methods for semi-infinite programming.

5 / 11

Research areas - Global Optimization

We seek for the global maximum of an optimization problem.

Global Optimization

$$\begin{array}{ll} \min_{x \in R} & f(x) \\ \text{s.t.} & \ell \leq x \leq u \\ & Ax \leq b \end{array}$$

Where f(x) is consider a "black box" objective function (no derivatives and possible noisy).

Ismael Vaz (NSOS, Algoritmi, U.Minho) MAP-i - D.P. in Computer Science

Application areas

We have used SIP in problems related with:

- Pollution control;
- Robot trajectory planning;

Software outcome

We have produced the only publicly available software for SIP

*

MATLAB is planning to use SIPAMPL in their "new" solver numerical tests.

▲ □ ► < □ ► </p>

Application areas

We have used SIP in problems related with:

- Pollution control;
- Robot trajectory planning;

Software outcome

We have produced the only publicly available software for SIP

- *
- - (http://neos.mcs.anl.gov/neos/solvers/siomsips/AMPL.html).

MATLAB is planning to use SIPAMPL in their "new" solver numerical tests.

イロト イポト イヨト イヨト

Application areas

We have used SIP in problems related with:

- Pollution control;
- Robot trajectory planning;

Software outcome

We have produced the only publicly available software for SIP

- SIPAMPL an extension of AMPL to semi-infinite programming problems (with some limitations)
- *
 - (http://neos.mcs.anl.gov/neos/solvers/sio:nsips/AMPL.html).

MATLAB is planning to use SIPAMPL in their "new" solver numerical tests.

イロト イポト イヨト イヨト

Application areas

We have used SIP in problems related with:

- Pollution control;
- Robot trajectory planning;

Software outcome

We have produced the only publicly available software for SIP

- SIPAMPL an extension of AMPL to semi-infinite programming problems (with some limitations)
- NSIPS solver for semi-infinite programming with interface to AMPL. Also available in the NEOS Server (http://neos.mcs.anl.gov/neos/solvers/sio:nsips/AMPL.html).

MATLAB is planning to use SIPAMPL in their "new" solver numerical tests.

Application areas

We have used SIP in problems related with:

- Pollution control;
- Robot trajectory planning;

Software outcome

We have produced the only publicly available software for SIP

- SIPAMPL an extension of AMPL to semi-infinite programming problems (with some limitations)
- NSIPS solver for semi-infinite programming with interface to AMPL. Also available in the NEOS Server (http://neos.mcs.anl.gov/neos/solvers/sio:nsips/AMPL.html).

MATLAB is planning to use SIPAMPL in their "new" solver numerical tests.

Application areas

We have used SIP in problems related with:

- Pollution control;
- Robot trajectory planning;

Software outcome

We have produced the only publicly available software for SIP

- SIPAMPL an extension of AMPL to semi-infinite programming problems (with some limitations)
- NSIPS solver for semi-infinite programming with interface to AMPL. Also available in the NEOS Server (http://neos.mcs.anl.gov/neos/solvers/sio:nsips/AMPL.html).

MATLAB is planning to use SIPAMPL in their "new" solver numerical tests.

Multi-Local Optimization

Application areas

We are mostly interested in the use of multi-local optimization in a reduction type methods for SIP.

Software outcome

MLOPSOA - Software for multi-local optimization with interface to AMPL, based on the particle swarm paradigm.

Ismael Vaz (NSOS, Algoritmi, U.Minho) MAP-i - D.P. in Computer Science

Multi-Local Optimization

Application areas

We are mostly interested in the use of multi-local optimization in a reduction type methods for SIP.

Software outcome

MLOPSOA - Software for multi-local optimization with interface to AMPL, based on the particle swarm paradigm.

Global Optimization

Application areas

We are dealing with an Astrophysics application (On the Milipeia platform). We are aware of PSwarm use on a Economical problem (with linear constraints) and a Mechanical problem (structural design).

Software outcome

PSwarm - Software for global optimization with interface to AMPL. Developed in C (serial and parallel versions) and MATLAB. Also available in the NEOS server

(http://neos.mcs.anl.gov/neos/solvers/go:PSwarm/AMPL.html)

A version that considers linear constraints is under development.

Global Optimization

Application areas

We are dealing with an Astrophysics application (On the Milipeia platform). We are aware of PSwarm use on a Economical problem (with linear constraints) and a Mechanical problem (structural design).

Software outcome

PSwarm - Software for global optimization with interface to AMPL. Developed in C (serial and parallel versions) and MATLAB. Also available in the NEOS server (http://neos.mcs.anl.gov/neos/solvers/go:PSwarm/AMPL.html)

A version that considers linear constraints is under development.

10 / 11

The End

email: aivaz@dps.uminho.pt

Web: http://www.norg.uminho.pt/aivaz

Ismael Vaz (NSOS, Algoritmi, U.Minho) MAP-i - D.P. in Computer Science aivaz@dps.uminho.pt

- E