
Solving semi-infinite programming problems by using an interface
between MATLAB and SIPAMPL

A. ISMAEL F. VAZ EDITE M.G.P. FERNANDES
Minho University, Engineering School, Campus of Gualtar

Production and Systems Department, 4710-057 Braga, Portugal
{aivaz,emgpf}@dps.uminho.pt

Abstract: A new interface between MATLAB and SIPAMPL was created, allowing the MATLAB semi-infinite
programming (SIP) solver to use the SIPAMPL [11] environment to obtain the problem data to be solved. In this
paper we present the new developed interface, briefly describe the fseminf MATLAB solver, provided in the
Optimization Toolbox [9], and we show how it can be used to solve a SIP problem available in the SIPAMPL
database. Additionally, we present how one may use the interface to develop new SIP algorithms for MATLAB.
We report numerical results for a set of SIP problems.

Key–Words: semi-infinite programming, modeling semi-infinite programming problems, MATLAB optimization
toolbox, SIPAMPL.

1 Introduction

We have recently made a compilation of semi-infinite
programming (SIP) problems collected from the lit-
erature. These problems are coded in AMPL [1]
and are publicly available to the research community.
This problems database, as well as a set of interface
routines to connect the AMPL to any SIP solver, a
select tool and a MATLAB interface are the main
components of a software package called SIPAMPL
[11]. Until now, the interface between MATLAB and
AMPL was done by a set of routines devoted to the
use of the fseminf MATLAB solver. The develop-
ment of new solvers in MATLAB that could obtain
the coded problems in AMPL was therefore compro-
mised. In this paper, we propose and describe a new
approach that was implemented to allow MATLAB to
directly use the SIPAMPL interface functions. The
new created MATLAB functions add more flexibility
when using SIPAMPL to provide the problem data.

We start in Section 2 by introducing the reader to
semi-infinite programming and to the used notation.
Section 3 is used to briefly describe the fseminf
MATLAB solver. In Section 4 we describe how the
SIPAMPL could be used by MATLAB to solve SIP
problems in the database. The new approach for using
SIPAMPL in a MATLAB environment is described in
Section 5. Numerical results and the conclusions are
presented in the last two sections.

2 Semi-infinite programming

SIP problems appear in many engineering areas such
as air control pollution [5, 13], robotics [2], produc-
tion planning [6, 14] and in Chebyshev approximation
theory [3, 4, 10]. A nonlinear semi-infinite program-
ming problem is described in the mathematical form
as follows:

min
x∈Rn

f(x)

s.t. gu(x, t) ≤ 0, u = 1, . . . ,m

hv(x) = 0, v = 1, . . . , o

hv(x) ≤ 0, v = o + 1, . . . , q

∀t ∈T .

(1)

T ⊂ Rp is an infinite set usually represented by a
cartesian product of intervals ([α1, β1] × [α2, β2] ×
· · · × [αp, βp]). These problems are called semi-
infinite programming problems due to the constraints
gu(x, t) ≤ 0, u = 1, . . . ,m, that must be satisfied
for all t ∈ T . We can consider T as an infinite index
set and therefore (1) is a problem with finitely many
variables over an infinite set of constraints.

MATLAB definition for a SIP problem is as fol-

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 283

lows:

min
x∈Rn

f(x)

s.t. gu(x, tu) ≤ 0, u = 1, . . . ,m

hv(x) = 0, v = 1, . . . , o

hv(x) ≤ 0, v = o + 1, . . . , q

Aex = be

Ax ≤ b

b− ≤ x ≤ b+

∀tu ∈ T ,

(2)

where T ⊂ R1 or T ⊂ R2.
The main difference between MATLAB defini-

tion of SIP (2) and the definition (1) is that MAT-
LAB restricts the number of t variables to be 1 or 2
(p = {1, 2}), although different constraints may have
different variables (tu for constraint u = 1, . . . ,m).
The SIP problems from the SIPAMPL database that
can be solved by the MATLAB solver are therefore
restricted to p = 1 or p = 2, since SIPAMPL assumes
that all t variables are present in all the g constraints.

3 The MATLAB solver
We refer to [9] for the fseminf function syntax and
details about the used parameters.

The fseminf algorithm consists of a quasi-
Newton SQP algorithm that uses line search with a
merit function applied to a finite problem that re-
sults from the SIP problem with the g constraints dis-
cretized in certain points. The discretization of the set
T is based on an interval sampling s that is used to
provide an equally spaced grid of points where the g
constraint is computed.

To obtain the finite problem the algorithm pro-
ceeds in the following way. If p = 1 in the g constraint
of index u then s(u,1) is the sampling interval for
the scalar element tu. If p = 2 in the g constraint of
index u then s(u,1) and s(u,2) are the sampling
intervals for the two elements vector tu.

fseminf does not use all the grid computed
constraint values. It identifies peaks in the data and
estimates the maxima of the discretized constraints
by using quadratic or cubic interpolation. This ap-
proach does not find the maximizers (tu variable(s)
value(s)), but just an estimate of the maxima, there-
fore the derivatives can not be used, even if they are
available.

This algorithm can therefore be classified as a dis-
cretization method [5] where the infinite constraints
are discretized in an equally spaced grid of points.
Since the number of maxima can change during the

optimization the Lagrange multipliers estimates are
reallocated to the new set of maxima.

4 Using MATLAB with (the old)
SIPAMPL interface

The SIPAMPL provides a database with over one hun-
dred and sixty coded SIP problems. The use of the
SIPAMPL interface routines by MATLAB allows it
to solve the coded problems. The sipampl MEX
function does the interface between MATLAB and
SIPAMPL. The function sipampl provided in the
SIPAMPL software package is limited to p = 1 or
p = 2 for the reasons already stated in section 2.

The sipampl syntax is:

[x0,nth,xbl,xbu] = sipampl(’stub’)
f = sipampl(x)

[f,Grad] = sipampl(x)
[c,ceq,K1,...,Knth,s] = sipampl(x,s)

sipampl(’msg’,x)

The behaviour of function sipampl depends on
the number of input and output arguments, thus:

• [x0,nth,xbl,xbu] = sipampl(’stub’)

reads the problem named stub (stub.nl file
provided by AMPL) and returns the initial guess
x0, the number of t constraints nth, and the
lower and upper bounds on the x variables xbl
and xbu, respectively.

• f = sipampl(x) returns the objective function
value at x.

• [f,Grad] = sipampl(x) returns the objec-
tive value and the gradient vector at x.

• [c,ceq,K1,..., Knth,s] =

sipampl(x,s) evaluates the constraints at
x. s is the step size for the grid where the g
constraints are evaluated (sampling interval).
c and ceq are vectors for the values of the
h constraints, c for inequality constraints and
ceq for equality constraints. K1,. . . ,Knth are
nth vectors (or matrices) with the g constraints
evaluated on the grid.

• sipampl(’msg’,x) writes the AMPL solution
x with the text message msg.

The interface includes two files. sipampl.c is
the main program that provides the MEX [7] function

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 284

sipampl. sipsolve.m is a MATLAB file with a
short example of how to use MATLAB to solve prob-
lems coded with SIPAMPL.

These files are also available by the internet1 with
the problems database and SIPAMPL.

The sipampl function requires the intermedi-
ate .nl, .col and .row files that are provided by
AMPL although they are not directly available. The
AMPL write command can be used to obtain the
needed files.

By providing the MATLAB calls to AMPL in
a single sipampl MEX function disables the user
from directly evaluate the constraints. For example, if
the user wishes to plot a graph with the constraint or
just to change the initial sample interval he must edit
the C source file sipampl.c. This limitation and
the fact that sipampl is closely related to the use of
fseminf led to the new approach proposed in the
next section.

5 A new approach for the SIPAMPL
interface with MATLAB

The new approach consists of exporting all the
SIPAMPL interface routines directly to MATLAB.
The new created MATLAB functions are:

• sip_init initializes the use of the SIPAMPL
interface routines;

• sip_end cleans memory and writes a solution
file for AMPL;

• sip_objval returns the objective value;

• sip_objgrd returns the objective gradient;

• sip_objhes returns the objective Hessian at
the last value used in the calls to objective or con-
straints functions;

• sip_conval returns all the constraint values;

• sip_contval returns an g constraint value;

• sip_contgrd returns an g constraint gradient;

• sip_conthes returns an g constraint Hessian
at the last value used in the calls to objective or
constraints functions;

1http://www.norg.uminho.pt/aivaz/

• sip_conxeqval returns an equality h con-
straint value;

• sip_conxeqgrd returns an equality h con-
straint gradient;

• sip_conxeqhes returns an equality h con-
straint Hessian at the last value used in the calls
to objective or constraints functions;

• sip_conxineqval returns an inequality h
constraint value;

• sip_conxineqgrd returns an inequality h
constraint gradient;

• sip_conxineqhes returns an inequality h
constraint Hessian at the last value used in the
calls to objective or constraints functions;

• sip_jacval returns the Jacobian of the h/g
constraints;

• sip_usage prints the sip_xxx usage. Used
by other functions when reporting an invalid
number of arguments.

The number of arguments in each of these func-
tions can be consulted by issuing the sip_usage
function. To get further help about each function the
MATLAB help command can be used.

All functions, after doing some checkup on the
arguments, call the MEX file sipampl2. The inter-
face between AMPL and MATLAB is accomplished
by this MEX file, which is provided in source (C
programming language) and was tested in Linux and
Windows platforms with MATLAB version 6.1, re-
lease 12.1. The mex compiler is provided with the
MATLAB software and it allows code to be written in
the C programming language to be used by the MAT-
LAB (see [7] for details).

Figure 1 shows a diagram with the several inter-
faces between AMPL and MATLAB.

We will use the one-dimensional problem
matlab1 available in the SIPAMPL database as an
example. This and matlab2 are the two problems
described in the MATLAB user manual. We start
by writing an M-File for the objective function. Let
mysipfun.m be such a file with the following con-
tent:

function [f,g]=mysipfun(x,s)
if nargin < 1 | nargout<1
error(’Invalid number of arguments’);

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 285

AMPL

.sol file

interface
AMPL

routines

SIPAMPL
interface
routines

.nl file
.col file
.row file

finite
solver

(NSIPS)

solver
SIP MATLAB

solver

(fseminf)

interface routines
SIPAMPL

MATLAB to

(sipampl2.c and .m files)

Figure 1: Diagram of interfaces between AMPL and
MATLAB

end
f=sip_objval(x);
if nargout > 1
g=sip_objgrd(x);

end

We write an M-File for the constraints. Let
mysipcon.m be such a file with the following con-
tent:

function [c,ceq,K1,K2,s]=mysipcon(x,s)
if nargin < 2 | nargout<5
error(’Invalid number of arguments’);

end
if isnan(s(1,1)),
s=[0.2 0; 0.2 0];

end
w1=1:s(1,1):100; w2=1:s(2,1):100;
lw1=length(w1); lw2=length(w2);
K1=zeros(lw1,1); K2=zeros(lw2,1);
for i=1:lw1
K1(i)=sip_contval(0,x,w1(i));

end
for i=1:lw2
K2(i)=sip_contval(1,x,w2(i));

end
c=[]; ceq=[];
plot(w1,K1,’-’,w2,K2,’:’);
title(’Semi-infinite constraints’);
drawnow

After writing both files and using AMPL
to produce matlab1.nl, matlab1.col and
matlab1.row we can use MATLAB in the follow-
ing way to solve the problem

>> [x0, xbl, xbu, tbl, tbu]=
sip_init(’matlab1’);

>> [x, fval]=
fseminf(’mysipfun’,x0,2,’mysipcon’)

...
x =

0.6673
0.3013

0.4023
fval =

0.0770

which produces the same solution as in the MATLAB
optimization toolbox manual. mysipcon will pro-
duce a graphic in each call.

6 Numerical results
The user defined MATLAB function to evaluate the
g constraints is significantly different from one- or
two-dimensional problems. To run all SIPAMPL
database problems from a dimensional independently
way we have written three M-files. sip_fun.m and
sip_con.m are the M-files that compute the ob-
jective function and constraints values, respectively.
sip_con.m should be edit to set the initial sampling
interval for each problem. For problem matlab1 we
have used s=[0.2 0; 0.2 0] and for matlab2
s=[2 2].

sip_solve.m does all the interface to the
SIPAMPL routines and calls fseminf to solve
the problem given as the only requested argument.
sip_solve does not return any argument, but adds a
line to the file results in a LATEX syntax and prints
the solution found. In this case the file contains the
following two lines:

matlab1 & 8 & 41 & 0.077014\\
matlab2 & 9 & 47 & 0.009132\\

where the first column corresponds to the problem
name, the second gives the number of iterations, the
third gives the number of objective function evalua-
tions and the last is the objective function value at the
found solution.

SIPAMPL has a select tool that allows the se-
lection of the problems from the database with given
characteristics. Table 1 shows the SIPAMPL prob-
lems from the database with p = 1 or p = 2 and with
both limits of the infinite set T finite. Problems that
do not have an initial guess were not considered, since
providing a random initial guess for some problems
can really affect the solver performance. In problems
gockenbach1, . . . , gockenbach10, the initial guesses
are randomly generated by AMPL (these problems
were coded in a way that an initial guess is randomly
generated whenever AMPL is called). These initial
guesses remained fixed in all the solver runs after ob-
taining the .nl, .col and .row files.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 286

To produce the .nl, .col and .row files
while selecting the problems from the database, the
select tool must be used in expert mode (see [12]).

The initial sampling interval was set to s(i,j)=
βj−αj

100 , i = 1, . . . ,m, j = 1, . . . , p. The fseminf
function uses quadratic or cubic interpolation to com-
pute the maxima of the infinite constraints. To obtain a
quadratic/cubic interpolation of the g constraint func-
tion at least three/four points in the grid are necessary.
The sampling interval (grid space s) is updated by the
fseminf function during the iterative process. Since
fseminf does not check for integrity in the sampling
interval we check and change the sampling interval to
provide a grid with at least four points per constraint.

In the table: “Problem” is the problem name un-
der SIPAMPL, n is the number of x variables, p is
the number of t variables; q is the number of h con-
straints, m is the number of g constraints, “nit” is the
number of iterations, “nf” is the number of function
evaluations and “fx” is the objective value at the found
solution.

Some problems were not solved because of the
following reasons:

1 - Problem was stopped with a division by zero
in the cubic interpolation (used to estimate the con-
straints peaks).

2 - The number of g constraints makes these prob-
lems time consuming when solved by MATLAB. We
have stopped gockenbach9 after 12 hours of computa-
tion and then decided to reduce the initial sampling
size to s(i, 1) = β1−α1

50 , i = 1, . . . ,m. With this
sampling a division by zero, in the cubic interpola-
tion, occurred in problems gochenbach10, gochen-
bach8, gockenbach7 and gockenbach6. gockenbach5
was solved and gockenbach9, gockenbach4, gocken-
back3, gockenback2 and gockenback1 were stopped
after 10 hours of computation time.

7 Conclusions

We provide new MATLAB functions that use the
SIPAMPL interface routines to obtain the SIP prob-
lem data to be solved. These new functions allow the
use of the MATLAB fseminf function to solve SIP
problems and support the development of new solvers
in MATLAB that can be connected with the SIPAMPL
problems database. We illustrate this new approach
with numerical results of the fseminf SIP MAT-
LAB solver.

Problem n p q m nit nf fx
andreson1 3 2 0 1 4 21 -3.33E-1
blankenship1 2 1 0 1 16 84 0.00E+0
coopeL 2 1 0 1 7 34 3.43E-1
coopeM 2 1 1 1 4 20 1.00E+0
coopeN 2 1 0 1 5 21 0.00E+0
elke10 9 1 0 7 1

elke1std 9 1 0 19 1

elke2std 9 1 0 19 1

elke3std 9 1 0 19 1

elke4std 9 1 0 7 1

elke5std 9 1 0 19 1

elke6std 9 1 0 19 1

elke7std 9 1 0 19 1

elke8 9 1 0 7 1

elke9 9 1 0 7 1

fang1 50 1 0 1 17 885 4.79E-1
fang2 50 1 0 1 41 2220 6.93E-1
fang3 50 1 0 1 78 4229 1.72E+0
ferris1 7 1 0 2 39 365 2.19E-3
ferris2 7 1 0 1 26 237 -1.78E+0
gockenbach1 33 1 120 16 2

gockenbach10 33 1 120 16 2

gockenbach2 33 1 120 16 2

gockenbach3 33 1 120 16 2

gockenbach4 33 1 120 16 2

gockenbach5 33 1 120 16 13 470 -7.88E-3
gockenbach6 33 1 120 16 2

gockenbach7 33 1 120 16 2

gockenbach8 33 1 120 16 2

gockenbach9 33 1 120 16 2

goerner1 4 1 0 2 15 98 4.13E-3
goerner2 5 1 0 2 15 123 4.64E-3
goerner3 7 1 0 2 18 167 6.92E-4
goerner4 7 2 0 2 9 85 5.24E-2
goerner5 7 2 0 2 17 183 2.71E-2
goerner6 16 2 0 2 52 1030 2.31E-3
goerner7 8 2 0 2 34 479 9.50E-2
hettich10c 2 1 0 2 1

hettich5 3 2 0 2 9 78 5.40E-1
leon1 4 1 0 2 33 277 5.22E-3
leon10 3 1 0 2 7 42 5.37E-1
leon11 3 1 0 2 55 302 1.85E+0
leon12 2 1 0 1 12 66 -1.00E+0
leon13 2 1 0 1 1

leon14 2 1 0 1 1

leon15 2 1 0 1 6 25 -6.67E-1
leon16 3 1 0 1 18 151 1.86E+0
leon17 3 1 0 1 2 11 -2.00E+0
leon18 2 1 0 1 1

leon19 5 1 0 1 24 187 7.86E-1
leon2 6 1 0 2 24 202 4.20E-5
leon3 6 1 0 2 14 143 4.84E-3
leon4 7 1 0 2 15 149 2.60E-3
leon5 8 1 0 2 32 380 1.43E-2
leon6 5 1 0 2 41 347 1.38E-4
leon7 5 1 0 2 32 245 1.97E-3
leon8 7 1 0 2 10 107 5.44E-2
leon9 7 1 0 2 23 268 2.04E-1
li1 10 1 0 1 62 1012 2.81E+5
li2 6 1 0 1 22 199 3.96E+4
lin1 6 2 0 1 22 189 -1.82E+0

Table 1: Numerical results with selected problems
(continues).

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 287

Problem n p q m nit nf fx
matlab1 3 1 0 2 16 83 3.57E-3
matlab2 3 2 0 1 4 22 2.00E-4
powell1 2 1 0 1 12 66 -1.00E+0
priceK 2 1 0 1 7 30 -3.00E+0
random 4 2 4 4 1 7 -1.00E-6
tanaka1 2 1 1 1 17 114 -1.00E+0
teo1 3 1 0 1 16 81 1.68E-1
teo2 3 1 0 1 18 91 1.85E-1
watson1 2 1 0 1 12 53 -2.50E-1
watson10 3 2 0 1 3 16 2.75E-1
watson11 3 2 0 1 13 71 -4.39E+0
watson12 3 2 0 1 5 26 1.95E+0
watson13 3 2 0 1 13 74 1.95E+0
watson14 2 1 0 1 30 204 2.13E+0
watson2 2 1 0 1 7 29 2.43E+0
watson3 3 1 0 1 41 305 5.13E+0
watson4a 3 1 0 1 19 152 6.47E-1
watson4b 6 1 0 1 17 175 6.17E-1
watson4c 8 1 0 1 30 398 6.16E-1
watson5 3 1 0 1 7 55 4.30E+0
watson6 2 1 0 1 18 102 9.72E+1
watson7 3 2 0 1 7 36 1.00E+0
watson8 6 2 0 1 36 392 2.44E+0
watson9 6 2 0 1 38 412 -1.04E+1
zhou1 2 1 0 1 1

Table 1: Numerical results with selected problems
(continued).

Acknowledgements: The research was supported by
the Algoritmi Research Center, and by the Portuguese
FCT under grant POCI/MAT/58957/2004.

References:

[1] R. Fourer, D.M. Gay, and B.W. Kernighan. A
modeling language for mathematical program-
ming. Management Science, 36(5):519–554,
1990.

[2] E. Haaren-Retagne. A Semi-Infinite Program-
ming Algorithm for Robot Trajectory Planning.
PhD thesis, University of Trier, 1992.

[3] R. Hettich. An implementation of a dis-
cretization method for semi-infinite program-
ming. Mathematical Programming, 34(3):354–
361, 1986.

[4] R. Hettich and G. Gramlich. A note on an im-
plementation of a method for quadratic semi-
infinite programming. Mathematical Program-
ming, 46:249–254, 1990.

[5] R. Hettich and K.O. Kortanek. Semi-infinite pro-
gramming: Theory, methods, and applications.
SIAM Review, 35(3):380–429, 1993.

[6] Y. Li and D. Wang. A semi-infinite program-
ming model for Earliness/Tardiness production
planning with simulated annealing. Mathe-
matical and Computer Modelling, 26(7):35–42,
1997.

[7] MathWorks. Application Program Interface
Guide. The MathWorks Inc., 1996.

[8] MathWorks. MATLAB. The MathWorks Inc.,
2001. Version 6.1, Release 12.1.

[9] MathWorks. MATLAB Optimization Toolbox.
The MathWorks Inc., 2001. In [8].

[10] R. Reemtsen. Discretization methods for the so-
lution of semi-infinite programming problems.
Journal of Optimization Theory and Applica-
tions, 71(1):85–103, 1991.

[11] A.I.F. Vaz, E.M.G.P. Fernandes, and M.P.S.F.
Gomes. SIPAMPL: Semi-infinite programming
with AMPL. ACM Transactions on Mathemati-
cal Software, 30(1):47–61, March 2004.

[12] A.I.F. Vaz, E.M.G.P. Fernandes, and M.P.S.F.
Gomes. SIPAMPL v2.1: Semi-Infinite
Programming with AMPL. Technical Re-
port ALG/EF/2-2003, Universidade do
Minho, Braga, Portugal, Dezembro 2004.
http://www.norg.uminho.pt/aivaz/.

[13] A.I.F. Vaz and E.C. Ferreira. Semi-infinite air
pollution control problems. In XXVIII Congreso
Nacional de la SEIO, page CDROM, Cádiz, Es-
panha, 2004. ISBN 84-689-0438-4.

[14] D. Wang and S.-C. Fang. A semi-infinite pro-
gramming model for Earliness/Tardiness pro-
duction planning with a genetic algorithm.
Computers and Mathematics with Applications,
31(8):95–106, 1996.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 288

