
I Congresso de Estatística e Investigação Operacional da Galiza e Norte de Portugal
VII Congreso Galego de Estatística e Investigación de Operacións
Guimarães 26, 27 e 28 de Outubro de 2005

Particle swarm algorithms for multi-local optimization

A. Ismael F. Vaz1, Edite M.G.P. Fernandes1

1Departamento de Produção e Sistemas
Escola de Engenharia, Universidade do Minho, Campus de Gualtar
4710-057 Braga, Portugal
Email: {aivaz,emgpf}@dps.uminho.pt.
Web: http://www.norg.uminho.pt.

ABSTRACT

Traditional particle swarm optimization (PSO) algorithms proved to be valid in
finding a global optimum. In this paper we propose a modification to the PSO
algorithm by introducing the gradient information or an approximate descent
direction to enable the computation of all the global and local optima of a single
multi-modal objective function. The numerical experiments carried out with a
set of well-known test problems show the effectiveness of the proposed algorithm.

Keywords: Particle swarm optimization, descent directions, multi-local optimization.

1. INTRODUCTION

In this paper we address the problem of finding multiple optimal solutions of

min
x∈X

f(x) (1)

where f(x) is a given multi-modal objective function and X is a compact set defined by
X = {x ∈ Rn : aj ≤ xj ≤ bj , j = 1, . . . , n}. We assume that the problem (1) has a finite
number of optimal solutions and the single function f(x) is continuously differentiable.

There are some applications where all the global and local solutions have to be computed
in a fast and reliable manner. This is the case with reduction type methods for solving semi-
infinite programming problems (Hettich and Kortanek (1993), León et al. (1998)). Due to
the existence of multiple local and global optima, these problems cannot be efficiently solved
by classical optimization techniques. Eberhart and Kennedy (1995) and Kennedy and Eber-
hart (1995) proposed the particle swarm optimization (PSO) algorithm which is a simple
population based algorithm motivated from the simulation of social behavior. Although this
is an effective algorithm, when compared with other evolutionary methods, for computing
a global solution, some problems can arise when the objective function has more than one
global minimum, since the algorithm oscillates between the solutions. Recently, there have
been a number of attempts to combine the use of PSO algorithms with other techniques
in order to locate multiple solutions of the problem (1). Parsopoulos and Vrahatis (2002)
proposed a modification of the PSO algorithm that relies on a stretching function technique
to isolate some particles in the swarm and generating small populations around them for a
finer search in their local neighborhood while the big swarm continues searching for better



solutions. Brits et al. (2002) presented the NichePSO algorithm, a variation of the tradi-
tional PSO algorithm that locates niches through the growing of subswarms from an initial
swarm of particles and the use of a Guaranteed Convergence Particle Swarm Optimization
algorithm (van den Bergh (2002)) to "train" the subswarm particles. An adaptive swarm
algorithm that is capable of identifying potentially good leaders during the evolution and
maintaining diversity of leaders across the search space in presented in Meng et al. (2004).

In this paper, we propose another modification of the PSO algorithm which uses descent
directions in order to drive each particle to a neighbor local minimum, thus locating multiple
solutions.

This paper is organized as follows. In Section 2 we present an overview of the PSO
algorithm. Section 3 describes the ideas behind the new multi-local swarm optimizer, Section
4 presents some implementation details and Section 5 reports on some numerical results using
a set of benchmark mathematical problems. The conclusions make up Section 6.

2. PARTICLE SWARM OPTIMIZATION

The particle swarm algorithm mimics a swarm behavior in looking for a certain objective.
The PSO algorithm simulates the social behavior concept to compute the global optima of
problem (1). This algorithm uses a population (swarm) of individuals (particles). To each
particle i, at time instant (or iteration) t, is assigned a position xi(t) ∈ X and a velocity vi(t)
that provides information to where the particle is travelling to. The information related to
the best position yi(t) that the particle has visited so far is also maintained. The velocity
at time instant t + 1 is updated as follows:

vi
j(t + 1) = ι(t)vi

j(t) + µω1j(t)
(
yi

j(t)− xi
j(t)

)
+ νω2j(t)

(
ŷj(t)− xi

j(t)
)
, j = 1, . . . , n (2)

where ι(t) is the inertial parameter, µ is the cognitive parameter, ν is the social parameter,
ω1j(t) and ω2j(t) are uniformly random numbers drawn from (0, 1), and ŷ represents the
best particle in the entire swarm. Thus, yi

j(t)−xi
j(t) is the direction to the particle previous

best ever position (cognitive direction) and ŷj(t)− xi
j(t) is the direction to the swarm best

ever position (social direction). The new particle position is then defined by

xi
j(t + 1) = xi

j(t) + vi
j(t + 1), j = 1, . . . , n.

A particle therefore uses the best position encountered by itself and that of the entire
swarm to position itself toward an optimal solution. In the traditional versions, the PSO
algorithm should only be applied to problems with at most a global minimum. To address
the problem of computing all the global and local optima we describe in the next section
the multi-local PSO algorithm which is able to compute multiple solutions by making use
of descent directions evaluated at each best particle position.

3. MULTI-LOCAL PARTICLE SWARM OPTIMIZER

The multi-local particle swarm optimization (MLPSO) algorithm that is capable of locating
multiple solutions of problem (1) is presented in this section. We will make use of two new
ideas to avoid the concentration of all the particles in the swarm around the best swarm
position. First, we replace the direction to the swarm best ever position, in the velocity
equation (2), by the steepest descent direction evaluated at the best ever particle position.
Alternatively, we also use an heuristic method to evaluate an approximate descent direction
at each particle best position.



To be able to maintain diversity, we avoid the social propagation of information related
to a global solution and use each particle personal experience and the steepest descent
information to drive a particle to a nearby minimum. The new particle swarm optimization
algorithm differs from the original one, in such a way that the social direction is dropped
out from equation (2) and the gradient information is used instead. The new equation for
the velocity is then

vi
j(t + 1) = ι(t)vi

j(t) + µω1j(t)
(
yi

j(t)− xi
j(t)

)
+ νω2j(t)

(
−∇fj(yi(t))

)
, j = 1, . . . , n. (3)

The inclusion of the steepest descent direction in the velocity equation (3) aims to drive
each particle to a neighbor local minimum and since we have a population of particles, each
one will be driven to a local minimum. Global minima are also detected, since they are local
minima as well. The inclusion of the gradient into the direction can pose some difficulties
to the algorithm, since the computed velocity can make particles to get out of the feasible
region. To prevent this behavior, the velocity is scaled to fit the maximum velocity allowed
and whenever a particle gets out of the feasible region its position is projected onto it.

The use of the gradient, however, may not be appropriate in the case where it is com-
putationally expensive. So, a derivative-free strategy becomes a method of choice. In what
follows we briefly describe a derivative-free heuristic method that is able to produce approx-
imate descent directions at each particle best position.

We use a recent strategy in which a set of m exploring points are used to generate an
approximate descent direction at a particular point y ∈ Rn (Hedar and Fukushima (2004)).
Let yi be the best position of particle i. Based on a set of m points {pi

k}m
k=1 close to yi, the

direction wi defined by

wi =
−1∑m

k=1 |f(pi
k)− f(yi)|

m∑
k=1

(f(pi
k)− f(yi))

(pi
k − yi)

‖pi
k − yi‖

is expected to be a descent direction at yi when f is a differentiable nonlinear function.
Moreover, under certain conditions, the direction wi simulates the steepest descent direction.
We refer to Hedar and Fukushima (2004) for details.

There are two methods to generate the points pi
k, k = 1, . . . ,m. The orthogonal method

and the random method. Since the orthogonal method is computationally more expensive,
we choose to implement the random method in which m = 2 points are randomly generated
from a small neighborhood of each yi, N(yi, ε) = {x ∈ Rn : ‖yi − x‖ ≤ ε}, for some small
ε > 0.

4. IMPLEMENTATION DETAILS

In this section we describe some implementation details regarding the implemented algo-
rithm, namely the stopping criteria and the used environment.

The used stopping criterion must account for optimality for all the particles. Using the
first order necessary optimality conditions for problem (1) we have that

∇xL(x∗, λ∗) = ∇f(x∗)− λ∗a + λ∗b = 0 (4)

where L is the Lagrangian function and λ∗a ≥ 0, λ∗b ≥ 0 are the Lagrange multipliers vectors,
at x∗, associated with the lower and upper bound constraints, respectively.

A given velocity for particle i at iteration t, vi(t), is descent to the objective function f
if

vi(t)T∇f(xi(t)) < 0. (5)



By using the strict complementarity condition we have that (λ∗b)j > 0 when x∗j = bj and
(λ∗b)j = 0 otherwise. The same scenario is valid for the lower bound limits.

Deriving an expression for∇f(x) from (4) and using (5) we propose the stopping criterion

max
i

[vi(t)]opt ≤ εp (6)

where

[vi(t)]opt =

 n∑
j=1


0 if xi

j(t) = bj and vi
j(t) ≥ 0

0 if xi
j(t) = aj and vi

j(t) ≤ 0(
vi

j(t)
)2 otherwise

1/2

.

MLPSO algorithm was coded in the C programming language and connected to AMPL
(Fourer et al. (1990), http://www.ampl.com) to provide the coded problems. The MLOCP-
SOA solver, publicly available in http://www.norg.uminho.pt/aivaz/, already includes the
gradient version and we plan to include the approximate descent direction version on its
next release.

The interface with AMPL allows a great flexibility to users, as parameters can be easily
changed and problems can be coded in the AMPL language for a quick run of the solver.

5. NUMERICAL EXPERIMENTS

Below we elaborate on the implementation of our MLPSO algorithm. The algorithm ter-
minates if criterion (6) is met with εp = 0.01 or the number of iterations exceeds Nmax

t =
100000. Coefficients µ and ν were both set to 1.2. The inertial parameter ι(t) was linearly
scaled from 0.7 to 0.2 over a maximum of Nmax

t iterations.
The neighborhood radius ε, which is used to generate the exploring points pi

k is set equal
to 10−3.

A set of uni and multi-modal well-known problems were used in the experiments. The
test set also includes a nondifferentiable problem in order to check the approximate descent
direction version. A list of the test problems is reported in Table 1. Column “Problems”
shows the problem name, n is the problem dimension, Nx∗ is the number of known global
optima and f∗ is the optimal objective function value. The AMPL models can be requested
from the first author.

For each problem, the optimizer was run 5 times with different initial particle positions
and velocities (randomly chosen from the search domains). The average number of function
evaluations, Nafe, the average number of gradient evaluations, Nage, and the average best
function values (f∗a ) over the 5 runs are reported in Table 2. The term fbest indicates the
best function value obtained in all runs. F.O. represents the percentage of frequency of
occurrence, which is given by the ratio between the number of detected solutions and the
number of known solutions. The swarm size is given by min(6n, 100), where n is the problem
dimension.

It is noteworthy that the approximate descent direction version requires more function
evaluations than the gradient version but yields higher success rates. Since, in some cases,
the norm of the gradient vector is large, the repeated use of the projection procedure in the
gradient version of the algorithm maintains the particles on the boundary of the feasible
region, thus preventing them to converge to a solution.

6. CONCLUSIONS AND FUTURE WORK

This paper introduces a new multi-local optimization algorithm that evaluates multiple
optimal solutions for multi-modal optimization problems. Our MLPSO algorithm adapts



Problems n Nx∗ f∗ Problems n Nx∗ f∗

1 b2 2 1 0.000E+00 17 rosenbrock5 5 1 0.000E+00
2 bohachevsky 2 1 0.000E+00 18 shekel10 4 1 -1.054E+01
3 branin 2 3 3.979E-01 19 shekel5 4 1 -1.015E+01
4 dejoung 3 1 0.000E+00 20 shekel7 4 1 -1.040E+01
5 easom 2 1 -1.000E+00 21 shubert 2 18 -1.867E+02
6 f1 30 1 -1.257E+04 22 storn1 2 2 -4.075E-01
7 goldprice 2 1 3.000E+00 23 storn2 2 2 -1.806E+01
8 griewank 6 1 0.000E+00 24 storn3 2 2 -2.278E+02
9 hartmann3 3 1 -3.863E+00 25 storn4 2 2 -2.429E+03

10 hartmann6 6 1 -3.322E+00 26 storn5 2 2 -2.478E+04
11 hump 2 2 0.000E+00 27 storn6 2 2 -2.493E+05
12 hump_camel 2 2 -1.032E+00 28 zakharov10 10 1 0.000E+00
13 levy3 2 18 -1.765E+02 29 zakharov2 2 1 0.000E+00
14 parsopoulos 2 12 0.000E+00 30 zakharov20 20 1 0.000E+00
15 rosenbrock10 10 1 0.000E+00 31 zakharov4 4 1 0.000E+00
16 rosenbrock2 2 1 0.000E+00 32 zakharov5 5 1 0.000E+00

Table 1: Test functions and characteristics

Gradient version Approximate descent direction version
F.O. Nafe Nage f∗a fbest F.O. Nafe f∗a fbest

1 100 3444343 873 0,000E+00 0,000E+00 100 3602386 0,000E+00 0,000E+00
2 100 2782058 545 0,000E+00 0,000E+00 100 3600983 0,000E+00 0,000E+00
3 100 1740823 1397 3,979E-01 3,979E-01 100 3601171 3,979E-01 3,979E-01
4 100 1647820 4420 2,618E-23 0,000E+00 100 10003223 0,000E+00 0,000E+00
5 100 283500 70615 -1,000E+00 -1,000E+00 100 3601354 -1,000E+00 -1,000E+00
6 Not differentiable 100 10104250 -1,448E+04 -1,468E+04
7 20 3600000 59 2,431E+01 4,583E+00 100 3600967 3,000E+00 3,000E+00
8 20 10000000 7754 1,084E-02 0,000E+00 0 10004487 2,257E-02 1,503E-02
9 100 10000000 483 -3,850E+00 -3,861E+00 100 10002098 -3,862E+00 -3,863E+00

10 40 10000000 525 -2,937E+00 -3,185E+00 100 10002652 -3,202E+00 -3,242E+00
11 100 963259 1082 -1,032E+00 -1,032E+00 100 3600946 -1,032E+00 -1,032E+00
12 100 1171181 1329 4,651E-08 4,651E-08 100 3601098 2,362E-06 6,756E-07
13 0 3600000 439 -1,276E+02 -1,592E+02 49 3601052 -1,765E+02 -1,765E+02
14 85 2952979 2295 4,922E-23 3,749E-33 75 3600819 2,607E-07 9,685E-08
15 0 10000000 154 8,051E+04 3,387E+04 0 10009292 8,726E+00 7,386E+00
16 0 3600000 91 3,046E+00 1,190E+00 100 3601268 1,437E-06 5,698E-07
17 0 10000000 177 4,652E+03 2,393E+03 40 10005589 2,203E-01 1,327E-01
18 100 10000000 1850 -9,160E+00 -1,026E+01 100 10004066 -1,052E+01 -1,052E+01
19 100 10000000 2126 -7,801E+00 -8,760E+00 100 10003906 -1,012E+01 -1,014E+01
20 100 10000000 1909 -9,401E+00 -9,997E+00 100 10004069 -1,037E+01 -1,039E+01
21 0 3600000 335 -1,024E+02 -1,648E+02 60 3600999 -1,867E+02 -1,867E+02
22 100 1366222 973 -4,075E-01 -4,075E-01 100 3600804 -4,075E-01 -4,075E-01
23 100 3600000 570 -1,806E+01 -1,806E+01 100 3600902 -1,806E+01 -1,806E+01
24 100 3600000 194 -2,278E+02 -2,278E+02 100 3601003 -2,278E+02 -2,278E+02
25 100 3600000 167 -2,429E+03 -2,429E+03 100 3601160 -2,429E+03 -2,429E+03
26 90 3600000 81 -2,477E+04 -2,478E+04 100 3601278 -2,478E+04 -2,478E+04
27 10 3600000 58 1,607E+05 -2,436E+05 100 3601418 -2,493E+05 -2,493E+05
28 0 10000000 141 4,470E+02 3,102E+01 60 10009759 3,977E-02 2,506E-02
29 0 10000000 135 1,289E+05 7,935E+02 0 10016905 3,633E-01 2,404E-01
30 100 1433664 16314 8,325E-112 0,000E+00 100 3601264 4,987E-07 4,464E-08
31 100 10000000 313 1,997E-13 2,780E-21 100 10005221 2,231E-04 6,612E-05
32 40 10000000 160 8,338E+00 3,031E-04 100 10006065 2,005E-03 1,186E-03

Table 2: Numerical results



the unimodal particle swarm optimizer using descent directions information to maintain
diversity and to drive the particles to neighbor local minima so avoiding the concentration
of the swarm around a unique global solution. Descent directions are obtained through the
gradient vector or an heuristic method to produce an approximate descent direction.

Experimental results indicate that the proposed algorithm is able to evaluate multiple
optimal solutions with reasonably success rates.

The use of a properly scaled gradient vector and the optimizer performance analysis on
high-dimensional problems are issues under investigation.

A inclusion of the proposed algorithm is planned to help a reduction type method for
semi-infinite programming.

7. ACKNOWLEDGMENTS

Work partially supported by FEDER and FCT under grant POCI/MAT/58957/2004, and
Algoritmi research center.

8. REFERENCES

Brits, R., Engelbrecht, A., and van den Bergh, F. (2002). A niching particle swarm optimizer.
In 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL2002), pages
692–696.

Eberhart, R. and Kennedy, J. (1995). New optimizers using particle swarm theory. In Pro-
ceedings of the 1995 6th International Sysmposium on Micro Machine and Human Science,
pages 39–43.

Fourer, R., Gay, D., and Kernighan, B. (1990). A modeling language for mathematical
programming. Management Science, 36(5):519–554.

Hedar, A.-R. and Fukushima, M. (2004). Heuristic pattern search and its hibridization with
simulated annealing for nonlinear global optimization. Optimization Methods and Software,
19(3-4):291–308.

Hettich, R. and Kortanek, K. (1993). Semi-infinite programming: Theory, methods, and
applications. SIAM Review, 35(3):380–429.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In
Proceedings of the 1995 IEEE International Conference on Neural Networks,
pages 1942–1948, Perth, Australia. IEEE Service Center, Piscataway, NJ.
http://engr.iupui.edu/∼shi/Coference/psopap4.html.

León, T., Sanmatías, S., and Vercher, E. (1998). A multi-local optimization algorithm. Top,
6(1):1–18.

Meng, T., Ray, T., and Dhar, P. (2004). Supplementary material on parameter estimation
using particle swarm. Preprint submitted to Elsevier Science.

Parsopoulos, K. and Vrahatis, M. (2002). Recent appoaches to global optimization. Natural
Computing, 1:235–306.

van den Bergh, F. (2002). An Analysis of Particle Swarm Optimizers. PhD thesis, Depart-
ment of Computer Science, University of Pretoria, South Africa.


