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Abstract: Optimal control problems appear in several engineering fields and in particular on the control of fed-
batch fermentation processes. These problems are often described by sets of nonlinear differential and algebraic
equations, usually subject to constraints in the state and control variables.
Tradicional approaches to the optimal feed trajectory computation consists in getting a linear spline that approxi-
mates the trajectory, which optimizes a given performance of the fed-batch fermentation process. This approach
leads to non-differentiable trajectories that can pose some problems to implement in practice, resulting in a possi-
ble discrepancy of the simulated and real performances.
In this paper we develop a technique to obtain a cubic spline for the approximate trajectory, leading to a smooth
approximation function. We provide numerical results for a set of case studies where the AMPL modeling lan-
guage, CVODE ordinary differential equations solver and a particle swarm algorithm were used.
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1 Introduction

A great number of valuable products, like biopharma-
ceuticals, are produced using fermentation processes
and thus optimizing such processes is of great eco-
nomic importance. In general highly nonlinear and
complex differential equations are used to model such
fermentation process. The optimization of the fer-
mentation process results in complex optimal control
problem where an analytical solution is very hard to
obtain.

A special case of the optimal control problem in
the fermentation context is the feed trajectory determi-
nation on a fed-batch bioreactor. A typical approach
to the feed trajectory optimization is to approximate
it by using linear segments (linear splines). The re-
sulting trajectory is therefore non-differentiable, mak-
ing the corresponding optimization problem also non-
differentiable. The optimization problem belongs to a
well known class of programming problems denoted

by semi-infinite [5]. By using the semi-infinite opti-
mality condition we can readily transforme the semi-
infinite optimal control problem into a nonlinear opti-
mal control problem (e.g. [11]).

While using linear splines to approximate the op-
timal feed trajectory leads to a simpler semi-infinite
programming (SIP) problem the resulting trajectory
approximation is not differentiable and therefore the
simulated performance can be significantly different
from the real one.

In this work we propose a new approach to the
feed trajectory planning by using cubic splines instead
of linear ones. The resulting approximation is now
smooth and expected it to be more realistic than the
one obtained with the previous approach.

A particle swarm algorithm was used to obtain the
numerical results.

In section 2 we introduce the reader to optimal
control and to the herein used notation. Section 3
is used to describe the common approach (the linear



splines to approximate the feed trajectory). The new
approach is described in section 4. In section 5 we
provide some implementation details. We leave the
numerical results to section 6 and we conclude in sec-
tion 7. Some leading research is also presented in the
last section.

2 Optimal control trajectory opti-
mization

Many microorganisms are used for producing valu-
able biopharmaceuticals products. During the fermen-
tation process the biomass and product concentrations
changes considerably. The system dynamic behavior
motivates the development of optimization techniques
to find the optimum input feeding trajectory of sub-
strate in order to obtain a maximum outcome from the
process. The outcome can be, for example, the max-
imum biomass production with a fixed duration time
or the minimum time with a fixed amount of substrate.

The optimal control problem is described by a
set of ordinary differential equations ẋ = f(x, u, t),
x(t0) = x0, t0 ≤ t ≤ tf , where x are the state vari-
ables and u the input variables that are a function of
time t. t0 and tf are the inicial and final time, re-
spectively. The performance index J can be generally
stated as

J(tf ) = ϕ(x(tf ), tf ) +
∫ tf

t0

φ(x, u, t)dt,

where ϕ is the performance index of the state variables
at final time tf and φ is the integrated performance
index during the operation.

Additional constraints on the state and input vari-
ables can be imposed that often reflet some physical
limitation of the system. The general maximization
problem (P ) can be posed as

max J(tf ) (1)

s.t. ẋ = f(x, u, t) (2)

x ≤ x(t) ≤ x, ∀t ∈ [t0, tf ] (3)

u ≤ u(t) ≤ u, ∀t ∈ [t0, tf ] (4)

Problem (P ) belong to a well known class of
semi-infinite programming problems [5]. These prob-
lems are characterized to have a finite number of vari-
ables to be optimized subject to an infinite number of
constraints.

x(t) and u(t) are functional vector whose compo-
nents are x1(t), x2(t), . . . , u1(t), u2(t), . . . , respec-
tively. Whenever x represents an n dimensional vec-
tor its components are addressed as x1, x2, . . . , xn and
vice-versa.

3 The common approach - Linear
splines

The optimization occurs when determining the op-
timal input variables u or operational final time tf .
The input variables often represent feeding (or tem-
perature, see [9]) trajectories, i.e., in determining the
amount of substrate to be fed into the bioreactor per
time unit.

Solving problem (P ) in its original formulation
is not advisable and unpractical, since no of-the-shelf
software for dealing with these type of problems is
available. Instead problem (P ) can be reformulated as
a non-differentiable global optimization problem by
imposing a penalty for dealing with constraint (3) and
to use linear interpolation for dealing with constraints
(4).

Imposing the penalty function for constraints (3)
results in redefining the objective function as

Ĵ(tf ) =
{

J(tf ) if x ≤ x(t) ≤ x, ∀t ∈ [t0, tf ]
−∞ otherwise

An already proposed strategy to deal with con-
straints (4) is to interpolate the function u(t) by a
polynomial (e.g. [9]). A parameter that makes a
great influence in the final trajectory precision is the
number of discretization points (knots) of the domain
[t0, tf ]. A well known effect on increasing the number
of knots (and consequently the polynomial degree) is
the increasing poor smoothness of the resulting poly-
nomial. Linear spline interpolation is therefore better
suited for approximate function u(t), where increas-
ing the number of knots increases precision without a
great affect on smoothness.

A linear interpolating function w(t) (linear
spline) is used to approximate the feeding trajectory
function u(t). Let ti, i = 0, . . . , n, denote the time
instants (knots) and hi = ti − ti−1, i = 1, . . . , n,
the time displacements. Fixed time intervals are used
while the linear spline function values u(ti), i =
0, . . . , n, are to be computed (in fact we may also use
ti as variables to be optimized, but keeping in mind
that ill condition can occur in this case). The linear
spline is composed of n linear segments. The spline
segment wi(t), i = 1, . . . , n, is defined as:

wi(t) =u(ti−1) + (t− ti−1)
(u(ti)− u(ti−1))

(ti − ti−1)
,

for t ∈ [ti−1, ti], i = 1, . . . , n.

By using the linear spline w(t) to approximate the
feed trajectory (u(t)) we obtain a SIP problem where
constraints (4) are replaced by u ≤ w(t) ≤ u. By



careful inspecting this constraint and by using the op-
timality conditions for SIP we observe that candidate
points to make constraints (4) active, at the solution,
are the spline knots and therefore constraints (4) can
be replaced by constraints imposing the limit at knots.
Constraint (4) can then be replaced by u ≤ w(ti) ≤ u,
i = 0, . . . , n.

The optimization nonlinear optimization problem
(NLP) is then redefined as:

max
w∈Rn+1

Ĵ(tf )

s.t. ẋ = f(x,w, t)

u ≤ w(ti) ≤ u, i = 0, . . . , n.

(5)

If the initial dynamic system conditions (x0) are
to be considered as variable we may also impose some
simple bound constraints on its attainable values. We
can also consider h ∈ Rn and tf as variables to be op-
timized increasing the problem dimensional and com-
plexity.

The major motivation for using derivative free op-
timization codes has to do with the fact that the objec-
tive function and the resulting w(t) trajectory func-
tion are not differentiable. Recall that using w(t) in
the dynamic equation makes them non-differentiable.
By using a stochastic algorithm we can also expect to
obtain the global optimum for the NLP problem.

4 The new approach - Cubic splines

By obtaining a non-differentiable trajectory approxi-
mation one expects bioreactor feed trajectory not to
be able to completely follow the optimal feed. A dis-
crepancy between the simulated and real performance
is likely to be observed.

Using a smooth approximation to the optimal feed
trajectory will result in a better simulated and real
performance gap. Meanwhile the trajectory optimal
control problem will be differentiable if the ordinary
differential equation and the performance index are
also differentiable (please note that using an infinity
penalty function turns the objective function into a
non-differentiable objective function). Still obtaining
the problem derivative would be a complex and te-
dious task and therefore the use of a derivative free
optimization algorithm is mostly desirable.

The new approach consists therefore in approxi-
mating the optimal feed trajectory by a cubic spline.

The penalty function Ĵ is again used as the ob-
jective function and the feed trajectory u(t) is approx-
imated by a cubic spline s(t). The cubic segment i,

i = 1, . . . , n, is defined as

si(t) =
Mi−1(ti−1 − t)3

6(ti − ti−1)
+

Mi(t− ti−1)3

6(ti − ti−1)
+[

u(ti−1)
ti − ti−1

− Mi−1(ti − ti−1)
6

]
(ti − t)+[

u(ti)
ti − ti−1

− Mi(ti − ti−1)
6

]
(t− ti−1)

with t ∈ [ti−1, ti], where ti, i = 0, . . . , n, are the time
instants.

The semi-infinite programming problem

max
s∈Rn+1

Ĵ(tf )

s.t. ẋ = f(x, s, t)

u ≤ s(t) ≤ u, ∀t ∈ T ≡ [t0, tf ].

is now of a much harder resolution, since a reduction
to a NLP is not straightforward.

Given u(ti), i = 0, . . . , n, getting the global max-
imizer of the parametric problem,

max
t∈[t0,tf ]

s(t)

in order to compute which t values make the con-
straint (4) active is indeed more complex.

To avoid the extra complexity a new redefinition
of the objective function is proposed. The control con-
straint is also included in the infinity penalty objec-
tive function resulting in the new objective to be opti-
mized, defined as

J̄(tf ) =
{

Ĵ(tf ) if u ≤ s(t) ≤ u, ∀t ∈ [t0, tf ]
−∞ otherwise

The optimization is then redefined in the follow-
ing way

max J̄(tf )

s.t. ẋ = f(x, s, t)

∀t ∈ T.

(6)

In spite of having a differentiable trajectory and
an ordinary differentiable system of equations the
objective function of problem (6) is still a non-
differentiable problem.

5 Implementation details

We briefly describe the details regarding the used en-
vironment to address problems (5) and (6).



The AMPL [4] modeling language for mathemat-
ical programming was used to code the case studies
(see also [2] for another popular modeling language).
AMPL provides an easy to use and powerful language,
an interface that allow communication with a wide
variety of solver (see www.ampl.com for a list of
available solvers) and the possibility to load an exter-
nal dynamic library.

By using AMPL as the modeling language mod-
ifications can easily be incorporated into the model.
If, for example, a constraint in the total allowed glu-
cose addition (tG) is to be imposed in problem (5), the
constraint

∑n−1
i=0 hi+1(w(ti) + w(ti+1))/2 ≤ tG can

easily be considered in the model.
The AMPL feature to load an external dy-

namic library was exploited. The external library
fed-batch.dll (available from the first author)
provides five external functions to AMPL related with
each test case considered. These external functions,
by its turn, use the CVODE [3] package to solve the
ordinary differential equations (2). The Newton itera-
tion with the CVDiag module was selected.

The MLOCPSOA [10] solver was used to pro-
vide the numerical results shown in the next section.
MLOCPSOA stands for Multi-LOCal Particle Swarm
Optimization Algorithm. Multi-local optimization ad-
dresses the finding of all the local and global optima
for an optimization problem. While MLOCPSOA was
developed with multi-local optimization in mind by
setting an option it reverses to the traditional particle
swarm algorithm.

MLOCPSOA provides an interface to AMPL, al-
lowing problems to be easily coded and solved in this
modeling language. The MLOCPSOA allows a wide
variety of algorithm parameters to be set. The used pa-
rameters are size for the population size (defaults to
min(6n, 1000)), maxiter for the maximum allowed
iterations (defaults to 2000) and mlocal for multi-
local search (defaults to 0 – global search instead of
multi-local search). All other parameters were left
by default. The reader is pointed for the user manual
([10]) for further details.

6 Numerical results

Numerical results were obtained for five case stud-
ies. The parameters used are presented together with
the numerical results in Table 1. ‘Problem’ column
refers to the case study (AMPL model file); NT is
the number of trajectories in the model; n is the
number of time displacements (problems with n + 1
variables) where equal displacements are considered
(hi = tf/n, i = 1, . . . , n). We include also the ob-
jective function value obtained in the literature for the

Problem NT n tf J(tf )
penicillin [1] 1 5 132.00 87.99
ethanol [1] 1 5 61.20 20839.00
chemotherapy [1] 1 4 84.00 14.48
hprotein [7, 8] 1 5 15.00 32.40
rprotein [7, 6] 2 5 10.00 0.16

Table 1: Test problems and parameters

Cubic Linear
Problem tf J(tf ) J(tf )
penicillin 132.00 87.70 88.29
ethanol 61.20 20550.70 20379.50
chemotherapy 84.00 15.75 16.83
hprotein 15.00 38.86 32.73
rprotein 10.00 0.13 0.12

Table 2: Numerical results

case studies in column ‘J(tf )’.
Problem penicillin refers to a problem of

fed-batch fermentation process where the optimal
feed trajectory is to be computed while the penicillin
production is to be maximized. ethanol refers to
a similar optimal control problem where the ethanol
production is to be maximized. chemotherapy is
the only optimal control problem that does not refers
to a fed-batch fermentation processe. It is a problem
of drug administration in chemotherapy. The optimal
trajectory to be computed is the quantity of drug that
must be present in order to achieve a specified tumor
reduction. While hprotein optimal control prob-
lem is to compute a unique trajectory (substrate to be
fed) problem rprotein includes also a trajectory
for an inducer. Both problems refer to a maximiza-
tion for protein production. See Table 1 for the case
studies references.

Numerical results for the linear and cubic splines
are shown in Table 2. Columns have the same mean-
ing as in the previous table. ‘Linear’ and ‘Cubic’
columns reports for the J(tf ) in the linear and cubic
splines trajectory approximation, respectively. Recall
that J(tf ) = Ĵ(tf ) = J̄(tf ) for every feasible spline.

MLOCPSOA used a population size of 60 and a
maximum of 1000 iterations (reaching a maximum of
60000 function evaluations). Since MLOCPSOA is
a stochastic algorithm we performed 10 solver runs
for each problem and the best solutions obtained are
report on Table 2. J(tf ) is the objective function value
and tf is the final time (t0 is assumed 0 for all cases).

No attempt is made on comparing our results with
the previously published ones, since implementation
details are not reported in previous papers. The use
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Figure 1: The ethanol case study with linear spline.
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Figure 2: The ethanol case study with cubic spline.
Similar solution.

of different techniques to solve the differential equa-
tions, discretization step and precision can influence
the objective value at the solution found.

Meanwhile we can observe that approximating
the feed trajectory by a linear or cubic spline does not
greatly influence the fed-batch performance.

ethanol was the case study with the greatest
performance difference in the obtained numerical re-
sults. This difference is due to the finding of a new
best feed trajectory for this case. We provide, in fig-
ures 1 to 3, plots of the state and control profiles for
the ethanol case study. In figure 1 we plot the pre-
vious results with the feed trajectory approximated by
a linear spline. The similar result is plotted in figure
2 where the approximation is a cubic spline. Figure 3
presents the new solution obtained with the trajectory
approximated by a cubic spline.
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Figure 3: The ethanol case study with cubic spline.
Best solution.

7 Conclusions and future work

The optimal control of fed-batch bioprocesses
presents challenging nonlinear optimization problems
where derivatives do not exist or are unpractical. As
in a previous work we address the state constraints by
combining it with the problem objective function in
an infinite penalty function.

In this paper we add an extra difficulty by us-
ing cubic splines to approximate the feed trajectory.
The control constraints with the trajectory approxi-
mated by cubic splines are handled in a similar way,
by adding an infinite violation to the objective func-
tion. The resulting nonlinear optimization problem
is characterized by possessing a non-convex non-
differentiable objective function subject to bound con-
straints in the variables.

Particle swarm optimization belongs to a class
of stochastic algorithms for global optimization and
its main advantages are the easily parallelization and
simplicity. In this paper we use the MLOCPSOA [10]
implementation of the particle swarm paradigm to ob-
tain numerical results with some problem formula-
tions.

No comparison with previous work is provide,
since the implementation depends on many parame-
ters external to the problem and algorithm (ordinary
differential equation solver, discretization step, etc.).

While no attempt is made to compare the pre-
viously obtained solutions with the linear spline ap-
proach, we provide a comparison among the linear
and cubic spline approaches. While similar results are
obtained in terms of objective function values the re-
sulting approximation to the trajectory is smooth.

We expect that the smoothness obtained in the
feed trajectory will allow better results in real experi-



ments.
The MLOCPSOA proved to be able to find the

problem solution with reasonable accuracy and the
particle swarm paradigm proved to be a valuable tool
in solving these optimal control problems.

The MLOCPSOA interface with AMPL allowed
an easy and fast way to code the five case studies prob-
lems. Using the AMPL modeling language together
with a developed external dynamic library allows a
great flexibility in the problem formulation.

As a future research we plan to study the E. coli
bacteria in the same framework. The availability of
a lab-scale bioreactor will allow us to confirm that a
cubic approximation of the feed trajectory produces
better results in practice.
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