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Introduction and motivation

Derivative-free multiobjective optimization

MOO problem

min
x∈Ω

F (x) ≡ (f1(x), f2(x), . . . , fm(x))>

where
Ω = {x ∈ Rn : ` ≤ x ≤ u}

fj : Rn → R ∪ {+∞},j = 1, . . . ,m, ` ∈ (R ∪ {−∞})n and u ∈ (R ∪ {+∞})n

Several objectives, often conflicting.

Functions with unknown derivatives.

Expensive function evaluations, possibly subject to noise.

Impractical to compute approximations to derivatives.
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Direct MultiSearch

DMS algorithmic main lines

Does not aggregate any of the objective functions.

Generalizes ALL direct-search methods of directional type to MOO.

Makes use of search/poll paradigm.

Implements an optional search step (only to disseminate the search).

Tries to capture the whole Pareto front from the polling procedure.

Keeps a list of feasible nondominated points.

Poll centers are chosen from the list.

Successful iterations correspond to list changes.
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Direct MultiSearch

DMS search & poll steps

At each iteration considers a list of feasible nondominated points
↪→ Lk

Evaluate a finite set of feasible points ↪→ Ladd.

Remove dominated points from Lk ∪ Ladd ↪→ Lfiltered.

Select list of feasible nondominated points ↪→ Ltrial.

Compare Ltrial to Lk (success if Ltrial 6= Lk, unsuccess otherwise).
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Direct MultiSearch

Numerical Example — Problem SP1 [Huband et al.]

� Evaluated points since beginning.
� Current iterate list.
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Direct MultiSearch

Refining subsequences and directions

For both globalization strategies (using the mesh or the forcing function in
the search step), one also has:

Theorem (existence of refining subsequences)

There is at least a convergent subsequence of iterates {xk}k∈K
corresponding to unsuccessful poll steps, such that αk −→ 0 in K.

Definition
Let x∗ be the limit point of a convergent refining subsequence.

Refining directions for x∗ are limit points of {dk/‖dk‖}k∈K where dk ∈ Dk

and xk + αkdk ∈ Ω.
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Direct MultiSearch

Pareto-Clarke critical point

Let us focus (for simplicity) on the unconstrained case, Ω = Rn.

Definition
x∗ is a Pareto-Clarke critical point of F (Lipschitz continuous near x∗) if

∀d ∈ Rn,∃j = j(d), f◦j (x∗; d) ≥ 0.
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Direct MultiSearch

Analysis of DMS

Assumption

{xk}k∈K refining subsequence converging to x∗.
F Lipschitz continuous near x∗.

Theorem
If v is a refining direction for x∗ then

∃j = j(v) : f◦j (x∗; v) ≥ 0.
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Direct MultiSearch

Convergence analysis of DMS

Theorem
If the set of refining directions for x∗ is dense in Rn, then x∗ is a
Pareto-Clarke critical point.

Notes
When m = 1, the presented results coincide with the ones reported for
direct search.
This convergence analysis is valid for multiobjective problems with
general nonlinear constraints.
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Numerical results

Numerical testing framework

Problems
100 bound constrained MOO problems (AMPL models available
at http://www.mat.uc.pt/dms).
Number of variables between 1 and 30.
Number of objectives between 2 and 4.

Solvers
DMS tested against 8 different MOO solvers (complete results
available at http://www.mat.uc.pt/dms).
Results reported only for
AMOSA – simulated annealing code.
BIMADS – based on mesh adaptive direct search algorithm.
NSGA-II (C version) – genetic algorithm code.

All solvers tested with default values.
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Numerical results

DMS numerical options

No search step.

List initialization: sample along the line `–u.

List selection: all current feasible nondominated points.

List ordering: new points added at the end of the list, poll center
moved to the end of the list.

Positive basis: [I − I].

Step size parameter: α0 = 1, halved at unsuccessful iterations.

Stopping criteria: minimum step size of 10−3 or a maximum of 20000
function evaluations.
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Numerical results

Performance metrics — Purity

Fp,s (approximated Pareto front computed by solver s for problem p).

Fp (approximated Pareto front computed for problem p, using results for all
solvers).

Purity value for solver s on problem p:

|Fp,s ∩ Fp|
|Fp,s|

.

A.I.F. Vaz (CERFACS 2011) DMS September 30, 2011 35 / 53



Numerical results

Comparing DMS to other solvers (Purity)
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Numerical results

Performance metrics — Spread
Gamma Metric (largest gap in the Pareto front)

Γp,s = max
j∈{1,...,m}

(
max

i∈{0,...,N}
{δi,j}

)

f
1

f 2

Computed extreme points

Obtained points

δ
N,1

δ
0,1

δ
0,2

δ
N−1,1

δ
N,2

δ
N−1,2
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Numerical results

Comparing DMS to other solvers (Spread)
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Numerical results

Performance metrics — Spread
Delta Metric (uniformity of gaps in the Pareto front)

∆p,s = max
j∈{1,...,m}

(
δ0,j + δN,j +

∑N−1
i=1 |δi,j − δ̄j |

δ0,j + δN,j + (N − 1)δ̄j

)
where δ̄j , for j = 1, . . . ,m, is the δi,j ’s average.

f
1

f 2

Computed extreme points

Obtained points

δ
N,1

δ
0,1

δ
0,2

δ
N−1,1

δ
N,2

δ
N−1,2
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Numerical results

Comparing DMS to other solvers (Spread)
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Numerical results

Comparing DMS to other solvers
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Further improvements on DMS

Comparing DMS to other solvers (Purity)
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Further improvements on DMS

Comparing DMS to other solvers (Spread)
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Conclusions and references

Conclusions and references

Development and analysis of a novel approach (Direct MultiSearch)
for MOO, generalizing ALL direct-search methods.

Direct MultiSearch (DMS) exhibits highly competitive numerical
results for MOO.

DMS (Matlab implementation) and problems (coded in AMPL) freely
available at: http://www.mat.uc.pt/dms.

A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente, Direct
multisearch for multiobjective optimization, to appear, SIAM Journal on
Optimization.
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