
Direct search for linearly constrained global optimization
using different search steps

A. Ismael F. Vaz

University of Minho - Portugal
aivaz@dps.uminho.pt

Joint work with Luis Nunes Vicente and Le Thi Hoai An

ICCOPT 2010

July 26-29, 2010

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 1 / 43

Outline

Outline

1 Direct search

2 Using particle swarm in the search step

3 Using radial basis functions in the search step

4 Conclusions

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 2 / 43

Outline

Outline

1 Direct search

2 Using particle swarm in the search step

3 Using radial basis functions in the search step

4 Conclusions

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 2 / 43

Outline

Outline

1 Direct search

2 Using particle swarm in the search step

3 Using radial basis functions in the search step

4 Conclusions

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 2 / 43

Outline

Outline

1 Direct search

2 Using particle swarm in the search step

3 Using radial basis functions in the search step

4 Conclusions

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 2 / 43

Direct search

Outline

1 Direct search

2 Using particle swarm in the search step

3 Using radial basis functions in the search step

4 Conclusions

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 3 / 43

Direct search

Linear-constrained derivative-free optimization

Problem formulation

min
x∈Ω

f(x)

where
Ω = {x ∈ Rn : Ax ≤ b, ` ≤ x ≤ u},

A ∈ Rm×n and b ∈ Rm.

We aim at solving this problem without using derivatives of f .

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 4 / 43

Direct search

Some definitions

Positive spanning set
Is a set of vectors that spans Rn with nonnegative coefficients.

Examples

D⊕ = {e1, . . . , en,−e1, . . . ,−en}

D⊗ = {e1, . . . , en,−e1, . . . ,−en, e,−e}

Extreme barrier function

fΩ(x) =
{
f(x) if x ∈ Ω,
+∞ otherwise.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 5 / 43

Direct search

Some definitions

Positive spanning set
Is a set of vectors that spans Rn with nonnegative coefficients.

Examples

D⊕ = {e1, . . . , en,−e1, . . . ,−en}

D⊗ = {e1, . . . , en,−e1, . . . ,−en, e,−e}

Extreme barrier function

fΩ(x) =
{
f(x) if x ∈ Ω,
+∞ otherwise.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 5 / 43

Direct search

Some definitions

Positive spanning set
Is a set of vectors that spans Rn with nonnegative coefficients.

Examples

D⊕ = {e1, . . . , en,−e1, . . . ,−en}

D⊗ = {e1, . . . , en,−e1, . . . ,−en, e,−e}

Extreme barrier function

fΩ(x) =
{
f(x) if x ∈ Ω,
+∞ otherwise.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 5 / 43

Direct search

A direct-search method

(0) Initialization
Choose x0 ∈ Ω, α0 > 0.

For k = 0, 1, 2, . . .

Let Dk be a positive spanning set (set of positive generators when there
are linear constraints).

(1) Search step (Optional)
Try to compute a point x in the grid Mk =

{
xk + αkDkz, z ∈ N|Dk|

0

}
with

fΩ(x) < f(xk).

If fΩ(x) < f(xk) then set xk+1 = x, declare the iteration and the search
step successful, and skip the poll step.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 6 / 43

Direct search

A direct-search method

(0) Initialization
Choose x0 ∈ Ω, α0 > 0.

For k = 0, 1, 2, . . .

Let Dk be a positive spanning set (set of positive generators when there
are linear constraints).

(1) Search step (Optional)
Try to compute a point x in the grid Mk =

{
xk + αkDkz, z ∈ N|Dk|

0

}
with

fΩ(x) < f(xk).

If fΩ(x) < f(xk) then set xk+1 = x, declare the iteration and the search
step successful, and skip the poll step.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 6 / 43

Direct search

A direct-search method

(0) Initialization
Choose x0 ∈ Ω, α0 > 0.

For k = 0, 1, 2, . . .

Let Dk be a positive spanning set (set of positive generators when there
are linear constraints).

(1) Search step (Optional)
Try to compute a point x in the grid Mk =

{
xk + αkDkz, z ∈ N|Dk|

0

}
with

fΩ(x) < f(xk).

If fΩ(x) < f(xk) then set xk+1 = x, declare the iteration and the search
step successful, and skip the poll step.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 6 / 43

Direct search

A direct-search method

(0) Initialization
Choose x0 ∈ Ω, α0 > 0.

For k = 0, 1, 2, . . .

Let Dk be a positive spanning set (set of positive generators when there
are linear constraints).

(1) Search step (Optional)
Try to compute a point x in the grid Mk =

{
xk + αkDkz, z ∈ N|Dk|

0

}
with

fΩ(x) < f(xk).

If fΩ(x) < f(xk) then set xk+1 = x, declare the iteration and the search
step successful, and skip the poll step.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 6 / 43

Direct search

A direct-search method

(2) Poll step: Optionally order the poll set Pk = {xk + αkd : d ∈ Dk}.

If a poll point xk + αkdk is found such that fΩ(xk + αkdk) < f(xk) then
stop polling, set xk+1 = xk + αkdk, and declare the iteration and the poll
step successful.

Otherwise declare the iteration (and the poll step) unsuccessful and set
xk+1 = xk.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 7 / 43

Direct search

A direct-search method

(2) Poll step: Optionally order the poll set Pk = {xk + αkd : d ∈ Dk}.

If a poll point xk + αkdk is found such that fΩ(xk + αkdk) < f(xk) then
stop polling, set xk+1 = xk + αkdk, and declare the iteration and the poll
step successful.

Otherwise declare the iteration (and the poll step) unsuccessful and set
xk+1 = xk.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 7 / 43

Direct search

A direct-search method

(2) Poll step: Optionally order the poll set Pk = {xk + αkd : d ∈ Dk}.

If a poll point xk + αkdk is found such that fΩ(xk + αkdk) < f(xk) then
stop polling, set xk+1 = xk + αkdk, and declare the iteration and the poll
step successful.

Otherwise declare the iteration (and the poll step) unsuccessful and set
xk+1 = xk.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 7 / 43

Direct search

A direct-search method

(3) Step size update: If the iteration was successful then maintain the
step size parameter (αk+1 = αk) or double it (αk+1 = 2αk) after two
consecutive poll successes along the same direction.

If the iteration was unsuccessful, halve the step size parameter
(αk+1 = αk/2).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 8 / 43

Direct search

A direct-search method

(3) Step size update: If the iteration was successful then maintain the
step size parameter (αk+1 = αk) or double it (αk+1 = 2αk) after two
consecutive poll successes along the same direction.

If the iteration was unsuccessful, halve the step size parameter
(αk+1 = αk/2).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 8 / 43

Direct search

Poll step — linear constraints

The set of polling directions needs to conform with the geometry of the
feasible set.

2.5 3 3.5 4 4.5 5 5.5
−0.5

0

0.5

1

1.5

2

2.5

x
1

x 2
hs024 ε−active constraint

ε

ε−active constraint

x
k

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 9 / 43

Direct search

Positive generators for the tangent cone

No ε-active constraints
The set of polling directions Dk is the positive spanning set D⊗.

For ε-active constraint(s)

Dk is the set of positive generators for the tangent cone of the ε-active
constraints (obtained by QR factorization).

Degeneracy
The ε parameter is dynamically adapted when degeneracy in the ε-active
constraints is detected. If no success is attained D⊗ is used.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 10 / 43

Direct search

Positive generators for the tangent cone

No ε-active constraints
The set of polling directions Dk is the positive spanning set D⊗.

For ε-active constraint(s)

Dk is the set of positive generators for the tangent cone of the ε-active
constraints (obtained by QR factorization).

Degeneracy
The ε parameter is dynamically adapted when degeneracy in the ε-active
constraints is detected. If no success is attained D⊗ is used.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 10 / 43

Direct search

Positive generators for the tangent cone

No ε-active constraints
The set of polling directions Dk is the positive spanning set D⊗.

For ε-active constraint(s)

Dk is the set of positive generators for the tangent cone of the ε-active
constraints (obtained by QR factorization).

Degeneracy
The ε parameter is dynamically adapted when degeneracy in the ε-active
constraints is detected. If no success is attained D⊗ is used.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 10 / 43

Using particle swarm in the search step

Outline

1 Direct search

2 Using particle swarm in the search step

3 Using radial basis functions in the search step

4 Conclusions

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 11 / 43

Using particle swarm in the search step

Motivation for using particle swarm

Central idea
A particle swarm iteration is performed in the search step (using several
particles).

Key points
In the first iterations the algorithm takes advantage of the particle
swarm ability to find a global optimum (exploiting the search space),
while in the last iterations the algorithm takes advantage of the
direct-search robustness to find a stationary point.
The number of particles in the swarm can be decreased along the
iterations (no need to have a large number of particles around a local
optimum).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 12 / 43

Using particle swarm in the search step

Motivation for using particle swarm

Central idea
A particle swarm iteration is performed in the search step (using several
particles).

Key points
In the first iterations the algorithm takes advantage of the particle
swarm ability to find a global optimum (exploiting the search space),
while in the last iterations the algorithm takes advantage of the
direct-search robustness to find a stationary point.
The number of particles in the swarm can be decreased along the
iterations (no need to have a large number of particles around a local
optimum).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 12 / 43

Using particle swarm in the search step

Motivation for using particle swarm

Central idea
A particle swarm iteration is performed in the search step (using several
particles).

Key points
In the first iterations the algorithm takes advantage of the particle
swarm ability to find a global optimum (exploiting the search space),
while in the last iterations the algorithm takes advantage of the
direct-search robustness to find a stationary point.
The number of particles in the swarm can be decreased along the
iterations (no need to have a large number of particles around a local
optimum).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 12 / 43

Using particle swarm in the search step

Motivation for using particle swarm

Central idea
A particle swarm iteration is performed in the search step (using several
particles).

Key points
In the first iterations the algorithm takes advantage of the particle
swarm ability to find a global optimum (exploiting the search space),
while in the last iterations the algorithm takes advantage of the
direct-search robustness to find a stationary point.
The number of particles in the swarm can be decreased along the
iterations (no need to have a large number of particles around a local
optimum).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 12 / 43

Using particle swarm in the search step

Particle Swarm (new position and velocity)

The new particle position is updated by

Update particle

xp
k+1 = xp

k + vp
k+1, p = 1, . . . , s.

vp
k+1 is the new velocity given by

Update velocity

vp
k+1 = ιkv

p
k + µω1k •

(
x̄p

k − x
p
k

)
+ νω2k •

(
xk − xp

k

)
,

where ιk, µ and ν are parameters and ω1k and ω2k are random vectors
drawn from the uniform (0, 1) distribution.
x̄p

k is the best particle p position and xk is the best population position.

Poll step

It is performed on xk, i.e., on the best population position (leader).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 13 / 43

Using particle swarm in the search step

Particle Swarm (new position and velocity)

The new particle position is updated by

Update particle

xp
k+1 = xp

k + vp
k+1, p = 1, . . . , s.

vp
k+1 is the new velocity given by

Update velocity

vp
k+1 = ιkv

p
k + µω1k •

(
x̄p

k − x
p
k

)
+ νω2k •

(
xk − xp

k

)
,

where ιk, µ and ν are parameters and ω1k and ω2k are random vectors
drawn from the uniform (0, 1) distribution.
x̄p

k is the best particle p position and xk is the best population position.

Poll step

It is performed on xk, i.e., on the best population position (leader).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 13 / 43

Using particle swarm in the search step

Particle Swarm (new position and velocity)

The new particle position is updated by

Update particle

xp
k+1 = xp

k + vp
k+1, p = 1, . . . , s.

vp
k+1 is the new velocity given by

Update velocity

vp
k+1 = ιkv

p
k + µω1k •

(
x̄p

k − x
p
k

)
+ νω2k •

(
xk − xp

k

)
,

where ιk, µ and ν are parameters and ω1k and ω2k are random vectors
drawn from the uniform (0, 1) distribution.
x̄p

k is the best particle p position and xk is the best population position.

Poll step

It is performed on xk, i.e., on the best population position (leader).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 13 / 43

Using particle swarm in the search step

Feasible initial population

Getting an initial feasible population allows a more efficient search for the
global optimum.

0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

x
1

x 2

hs024 feasible region

User provided initial guess
Maximum volume ellipsoid

Initial feasible population

Zhang and Gao
interior-point code
is being used to
compute the maxi-
mum volume ellip-
soid.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 14 / 43

Using particle swarm in the search step

Search step (Particle Swarm)

Feasibility is kept during the optimization process for all particles. This is
achieved by introducing a maximum allowed step in the search direction.

Maximum allowed step

xp
k+1 = xp

k + αmaxv
p
k+1,

where αmax is the maximum step
allowed to keep xp

k+1 inside the
feasible region.

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x
1

x 2

hs024 after 10 iterations and 5 succ. poll steps

x*=(3, 1.73)

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 15 / 43

Using particle swarm in the search step

Testing environment — bound constrained

Test problems
122 problems.
Including 12 are of large dimension (100-300 variables).

Solvers used
ASA – Adaptative Simulated Annealing.
PSwarm – (our approach: Pattern Search with Particle Swarm step).
PGAPack – Parallel Genetic Algorithms Package.
Direct – Dividing Rectangles.
MCS – Multilevel Coordinate Search.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 16 / 43

Using particle swarm in the search step

Testing environment — bound constrained

Test problems
122 problems.
Including 12 are of large dimension (100-300 variables).

Solvers used
ASA – Adaptative Simulated Annealing.
PSwarm – (our approach: Pattern Search with Particle Swarm step).
PGAPack – Parallel Genetic Algorithms Package.
Direct – Dividing Rectangles.
MCS – Multilevel Coordinate Search.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 16 / 43

Using particle swarm in the search step

Testing environment — bound constrained

Test problems
122 problems.
Including 12 are of large dimension (100-300 variables).

Solvers used
ASA – Adaptative Simulated Annealing.
PSwarm – (our approach: Pattern Search with Particle Swarm step).
PGAPack – Parallel Genetic Algorithms Package.
Direct – Dividing Rectangles.
MCS – Multilevel Coordinate Search.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 16 / 43

Using particle swarm in the search step

Testing environment — bound constrained

Test problems
122 problems.
Including 12 are of large dimension (100-300 variables).

Solvers used
ASA – Adaptative Simulated Annealing.
PSwarm – (our approach: Pattern Search with Particle Swarm step).
PGAPack – Parallel Genetic Algorithms Package.
Direct – Dividing Rectangles.
MCS – Multilevel Coordinate Search.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 16 / 43

Using particle swarm in the search step

Testing environment — bound constrained

Test problems
122 problems.
Including 12 are of large dimension (100-300 variables).

Solvers used
ASA – Adaptative Simulated Annealing.
PSwarm – (our approach: Pattern Search with Particle Swarm step).
PGAPack – Parallel Genetic Algorithms Package.
Direct – Dividing Rectangles.
MCS – Multilevel Coordinate Search.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 16 / 43

Using particle swarm in the search step

Testing environment — bound constrained

Test problems
122 problems.
Including 12 are of large dimension (100-300 variables).

Solvers used
ASA – Adaptative Simulated Annealing.
PSwarm – (our approach: Pattern Search with Particle Swarm step).
PGAPack – Parallel Genetic Algorithms Package.
Direct – Dividing Rectangles.
MCS – Multilevel Coordinate Search.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 16 / 43

Using particle swarm in the search step

Testing environment — bound constrained

Test problems
122 problems.
Including 12 are of large dimension (100-300 variables).

Solvers used
ASA – Adaptative Simulated Annealing.
PSwarm – (our approach: Pattern Search with Particle Swarm step).
PGAPack – Parallel Genetic Algorithms Package.
Direct – Dividing Rectangles.
MCS – Multilevel Coordinate Search.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 16 / 43

Using particle swarm in the search step

Testing environment — bound constrained

Test problems
122 problems.
Including 12 are of large dimension (100-300 variables).

Solvers used
ASA – Adaptative Simulated Annealing.
PSwarm – (our approach: Pattern Search with Particle Swarm step).
PGAPack – Parallel Genetic Algorithms Package.
Direct – Dividing Rectangles.
MCS – Multilevel Coordinate Search.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 16 / 43

Using particle swarm in the search step

Testing environment — bound constrained

Test problems
122 problems.
Including 12 are of large dimension (100-300 variables).

Solvers used
ASA – Adaptative Simulated Annealing.
PSwarm – (our approach: Pattern Search with Particle Swarm step).
PGAPack – Parallel Genetic Algorithms Package.
Direct – Dividing Rectangles.
MCS – Multilevel Coordinate Search.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 16 / 43

Using particle swarm in the search step

Numerical results (final value for f)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average objective value of 30 runs with maxf=1000 (7500)

τ

ρ

ASA
PSwarm
PGAPack
Direct
MCS

200 400 600
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

τ

ρ

For further details see Vaz and Vicente, JOGO, 2007.
A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 17 / 43

Using particle swarm in the search step

Numerical results (final value for f)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average objective value of 30 runs with maxf=1000 (7500)

τ

ρ

ASA
PSwarm
PGAPack
Direct
MCS

200 400 600
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

τ

ρ

For further details see Vaz and Vicente, JOGO, 2007.
A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 17 / 43

Using particle swarm in the search step

Numerical results (number of evaluations)

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average objective evaluation of 30 runs with maxf=1000

τ

ρ

ASA
PSwarm
PGAPack
Direct
MCS

200 400 600
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

τ

ρ

Average number of objective function evaluations.
maxf ASA PGAPack PSwarm Direct MCS
1000 857 1009∗ 686 1107∗ 1837∗

10000 5047 10009∗ 3603 11517∗ 4469

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 18 / 43

Using particle swarm in the search step

Testing environment — linear constrained

Test problems
120 problems with linear constraints were collected from 1564
optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
23 linear, 55 quadratic and 32 general nonlinear.
10 highly non-convex objective functions with random generated linear
constraints (Pinter).

Solvers used
PSwarm – (our approach: Pattern Search with Particle Swarm step).
ASA – Adaptative Simulated Annealing.
Direct – Dividing Rectangles.
NOMAD – A blackbox optimization software (MATLAB version).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 19 / 43

Using particle swarm in the search step

Testing environment — linear constrained

Test problems
120 problems with linear constraints were collected from 1564
optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
23 linear, 55 quadratic and 32 general nonlinear.
10 highly non-convex objective functions with random generated linear
constraints (Pinter).

Solvers used
PSwarm – (our approach: Pattern Search with Particle Swarm step).
ASA – Adaptative Simulated Annealing.
Direct – Dividing Rectangles.
NOMAD – A blackbox optimization software (MATLAB version).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 19 / 43

Using particle swarm in the search step

Testing environment — linear constrained

Test problems
120 problems with linear constraints were collected from 1564
optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
23 linear, 55 quadratic and 32 general nonlinear.
10 highly non-convex objective functions with random generated linear
constraints (Pinter).

Solvers used
PSwarm – (our approach: Pattern Search with Particle Swarm step).
ASA – Adaptative Simulated Annealing.
Direct – Dividing Rectangles.
NOMAD – A blackbox optimization software (MATLAB version).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 19 / 43

Using particle swarm in the search step

Testing environment — linear constrained

Test problems
120 problems with linear constraints were collected from 1564
optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
23 linear, 55 quadratic and 32 general nonlinear.
10 highly non-convex objective functions with random generated linear
constraints (Pinter).

Solvers used
PSwarm – (our approach: Pattern Search with Particle Swarm step).
ASA – Adaptative Simulated Annealing.
Direct – Dividing Rectangles.
NOMAD – A blackbox optimization software (MATLAB version).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 19 / 43

Using particle swarm in the search step

Testing environment — linear constrained

Test problems
120 problems with linear constraints were collected from 1564
optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
23 linear, 55 quadratic and 32 general nonlinear.
10 highly non-convex objective functions with random generated linear
constraints (Pinter).

Solvers used
PSwarm – (our approach: Pattern Search with Particle Swarm step).
ASA – Adaptative Simulated Annealing.
Direct – Dividing Rectangles.
NOMAD – A blackbox optimization software (MATLAB version).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 19 / 43

Using particle swarm in the search step

Testing environment — linear constrained

Test problems
120 problems with linear constraints were collected from 1564
optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
23 linear, 55 quadratic and 32 general nonlinear.
10 highly non-convex objective functions with random generated linear
constraints (Pinter).

Solvers used
PSwarm – (our approach: Pattern Search with Particle Swarm step).
ASA – Adaptative Simulated Annealing.
Direct – Dividing Rectangles.
NOMAD – A blackbox optimization software (MATLAB version).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 19 / 43

Using particle swarm in the search step

Testing environment — linear constrained

Test problems
120 problems with linear constraints were collected from 1564
optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
23 linear, 55 quadratic and 32 general nonlinear.
10 highly non-convex objective functions with random generated linear
constraints (Pinter).

Solvers used
PSwarm – (our approach: Pattern Search with Particle Swarm step).
ASA – Adaptative Simulated Annealing.
Direct – Dividing Rectangles.
NOMAD – A blackbox optimization software (MATLAB version).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 19 / 43

Using particle swarm in the search step

Testing environment — linear constrained

Test problems
120 problems with linear constraints were collected from 1564
optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
23 linear, 55 quadratic and 32 general nonlinear.
10 highly non-convex objective functions with random generated linear
constraints (Pinter).

Solvers used
PSwarm – (our approach: Pattern Search with Particle Swarm step).
ASA – Adaptative Simulated Annealing.
Direct – Dividing Rectangles.
NOMAD – A blackbox optimization software (MATLAB version).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 19 / 43

Using particle swarm in the search step

Testing environment — linear constrained

Test problems
120 problems with linear constraints were collected from 1564
optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
23 linear, 55 quadratic and 32 general nonlinear.
10 highly non-convex objective functions with random generated linear
constraints (Pinter).

Solvers used
PSwarm – (our approach: Pattern Search with Particle Swarm step).
ASA – Adaptative Simulated Annealing.
Direct – Dividing Rectangles.
NOMAD – A blackbox optimization software (MATLAB version).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 19 / 43

Using particle swarm in the search step

Linear objective functions

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1
Objective function values (average of 10 runs with maxf=2000, linear objective)

ν

ρ

PSwarm
ASA
Direct
Nomad

1 1.1 1.2
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ν

ρ

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 20 / 43

Using particle swarm in the search step

Quadratic objective functions

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1
Objective function values (average of 10 runs with maxf=2000, quadratic objective)

ν

ρ

PSwarm
ASA
Direct
Nomad

2 2.5
0.4

0.5

0.6

0.7

0.8

0.9

1

ν

ρ

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 21 / 43

Using particle swarm in the search step

General nonlinear objective functions

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Objective function values (average of 10 runs with maxf=2000, nonlinear objective)

ν

ρ

PSwarm
ASA
Direct
Nomad

2 4 6 8
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ν

ρ

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 22 / 43

Using particle swarm in the search step

All objective functions

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1
Objective function values (average of 10 runs with maxf=2000)

ν

ρ

PSwarm
ASA
Direct
Nomad

5 10 15
0.4

0.5

0.6

0.7

0.8

0.9

1

ν

ρ

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 23 / 43

Using particle swarm in the search step

Highly non-convex objective functions

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Objective function values (average of 10 runs with maxf=10000, non−convex problems)

ν

ρ

PSwarm
ASA
Direct
Nomad

230 235 240

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ν

ρ

For further details see Vaz and Vicente, OMS, 2009.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 24 / 43

Using particle swarm in the search step

Highly non-convex objective functions

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Objective function values (average of 10 runs with maxf=10000, non−convex problems)

ν

ρ

PSwarm
ASA
Direct
Nomad

230 235 240

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ν

ρ

For further details see Vaz and Vicente, OMS, 2009.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 24 / 43

Using radial basis functions in the search step

Outline

1 Direct search

2 Using particle swarm in the search step

3 Using radial basis functions in the search step

4 Conclusions

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 25 / 43

Using radial basis functions in the search step

Motivation for using RBFs

Main idea
To take advantage of direct-search methods of directional type where
the iterations can be divided into two main steps (a search step and a
poll step).

Consists of forming and minimizing an Radial Basis Function (RBF)
model in the search step.

The RBF model can be used to order the poll set of directions.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 26 / 43

Using radial basis functions in the search step

Motivation for using RBFs

Main idea
To take advantage of direct-search methods of directional type where
the iterations can be divided into two main steps (a search step and a
poll step).

Consists of forming and minimizing an Radial Basis Function (RBF)
model in the search step.

The RBF model can be used to order the poll set of directions.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 26 / 43

Using radial basis functions in the search step

Motivation for using RBFs

Main idea
To take advantage of direct-search methods of directional type where
the iterations can be divided into two main steps (a search step and a
poll step).

Consists of forming and minimizing an Radial Basis Function (RBF)
model in the search step.

The RBF model can be used to order the poll set of directions.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 26 / 43

Using radial basis functions in the search step

Motivation for using RBFs

Main idea
To take advantage of direct-search methods of directional type where
the iterations can be divided into two main steps (a search step and a
poll step).

Consists of forming and minimizing an Radial Basis Function (RBF)
model in the search step.

The RBF model can be used to order the poll set of directions.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 26 / 43

Using radial basis functions in the search step

Radial Basis Functions (RBFs)

In order to interpolate a function f whose values on a set
Y = {y1, . . . , ynp} ⊂ Rn are known, one can use a RBF model of the form

m(x) =
np∑
i=1

λiφ(‖x− yi‖),

where φ(‖ · ‖), with φ : R+ → R, is a radial basis function and
λ1, . . . , λnp ∈ R are parameters to be determined.

Property

For m(x) to be C2, the function φ(x) must be both C2 and φ′(0) = 0.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 27 / 43

Using radial basis functions in the search step

Radial Basis Functions (RBFs)

In order to interpolate a function f whose values on a set
Y = {y1, . . . , ynp} ⊂ Rn are known, one can use a RBF model of the form

m(x) =
np∑
i=1

λiφ(‖x− yi‖),

where φ(‖ · ‖), with φ : R+ → R, is a radial basis function and
λ1, . . . , λnp ∈ R are parameters to be determined.

Property

For m(x) to be C2, the function φ(x) must be both C2 and φ′(0) = 0.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 27 / 43

Using radial basis functions in the search step

Radial Basis Functions (RBFs)

In many applications, it is desirable that the linear space spanned by the
basis functions includes constant or linear functions.

One can augment RBF model by allowing a low-order polynomial tail. The
new model is now of the form

m(x) =
np∑
i=1

λiφ(‖x− yi‖) +
q∑

j=0

γjpj(x),

where pj(x), j = 0, . . . , q, are some basis functions for the polynomial and
γ0, . . . , γq ∈ R.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 28 / 43

Using radial basis functions in the search step

Radial Basis Functions (RBFs)

The coefficients λ’s are required to satisfy

np∑
i=1

λipj(yi) = 0, j = 0, . . . , q.

These, in conjunction with the interpolation conditions m(yi) = f(yi),
i = 1, . . . , np, give the linear system[

Φ P
P> 0

] [
λ
γ

]
=
[
f(Y)

0

]
,

where Φij = φ(‖yi − yj‖) for i, j ∈ {1, . . . , np}, Pij = pj(yi) for
i ∈ {1, . . . , np}, j ∈ {0, . . . , q}, and f(Y) is the vector formed by the
values f(y1), . . . , f(ynp).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 29 / 43

Using radial basis functions in the search step

Radial Basis Functions (RBFs)

The polynomial tails most frequently used in the context of RBF are linear,
and we will write t(x) = c+ g>x and

m(x) =
np∑
i=1

λiφ(‖x− yi‖) + t(x).

This model has np + n+ 1 parameters, np for the radial basis terms and
n+ 1 for the linear polynomial terms.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 30 / 43

Using radial basis functions in the search step

Radial Basis Functions (RBFs)

Common/Used approach

Common approaches for derivative-free optimization use cubic RBFs and
linear polynomial tails

m(x) =
np∑
i=1

λi‖x− yi‖3 + t(x).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 31 / 43

Using radial basis functions in the search step

Constraints handling

Bound constraints
They can simply be considered in the minimization of the RBF model.

Linear constraints
They are temporarily removed from the RBF model minimization and
then we project the minimizer onto Ω.
For a feasible initial guess and the set of poll directions we use the
same strategies already shown.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 32 / 43

Using radial basis functions in the search step

Constraints handling

Bound constraints
They can simply be considered in the minimization of the RBF model.

Linear constraints
They are temporarily removed from the RBF model minimization and
then we project the minimizer onto Ω.
For a feasible initial guess and the set of poll directions we use the
same strategies already shown.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 32 / 43

Using radial basis functions in the search step

Constraints handling

Bound constraints
They can simply be considered in the minimization of the RBF model.

Linear constraints
They are temporarily removed from the RBF model minimization and
then we project the minimizer onto Ω.
For a feasible initial guess and the set of poll directions we use the
same strategies already shown.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 32 / 43

Using radial basis functions in the search step

Constraints handling

Bound constraints
They can simply be considered in the minimization of the RBF model.

Linear constraints
They are temporarily removed from the RBF model minimization and
then we project the minimizer onto Ω.
For a feasible initial guess and the set of poll directions we use the
same strategies already shown.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 32 / 43

Using radial basis functions in the search step

RBF model subproblem

Thus, the RBF model subproblem we are addressing is

min m(x) s.t. x ∈ Ω̄,

where Ω̄ is the feasible region defined by upper and lower bounds on the
variables, i.e., Ω̄ = [`, u] ∩B∞(xk;σαk).

Solvers used for subproblems

Difference of Convex (D.C.) algorithm, in order to take advantage of
the RBF structure.
fmincon from the MATLAB optimization toolbox.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 33 / 43

Using radial basis functions in the search step

RBF model subproblem

Thus, the RBF model subproblem we are addressing is

min m(x) s.t. x ∈ Ω̄,

where Ω̄ is the feasible region defined by upper and lower bounds on the
variables, i.e., Ω̄ = [`, u] ∩B∞(xk;σαk).

Solvers used for subproblems

Difference of Convex (D.C.) algorithm, in order to take advantage of
the RBF structure.
fmincon from the MATLAB optimization toolbox.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 33 / 43

Using radial basis functions in the search step

RBF model subproblem

Thus, the RBF model subproblem we are addressing is

min m(x) s.t. x ∈ Ω̄,

where Ω̄ is the feasible region defined by upper and lower bounds on the
variables, i.e., Ω̄ = [`, u] ∩B∞(xk;σαk).

Solvers used for subproblems

Difference of Convex (D.C.) algorithm, in order to take advantage of
the RBF structure.
fmincon from the MATLAB optimization toolbox.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 33 / 43

Using radial basis functions in the search step

RBF model subproblem

Thus, the RBF model subproblem we are addressing is

min m(x) s.t. x ∈ Ω̄,

where Ω̄ is the feasible region defined by upper and lower bounds on the
variables, i.e., Ω̄ = [`, u] ∩B∞(xk;σαk).

Solvers used for subproblems

Difference of Convex (D.C.) algorithm, in order to take advantage of
the RBF structure.
fmincon from the MATLAB optimization toolbox.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 33 / 43

Using radial basis functions in the search step

Testing environment

Test problems
The test set used in the numerical results includes 119 bound
constrained problems and 109 linearly constrained problems coded in
the AMPL format.
In all cases, the stopping criteria consisted of reaching a maximum
budget of 1000 function evaluations or driving the step size
parameter αk below 10−5.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 34 / 43

Using radial basis functions in the search step

Testing environment

Test problems
The test set used in the numerical results includes 119 bound
constrained problems and 109 linearly constrained problems coded in
the AMPL format.
In all cases, the stopping criteria consisted of reaching a maximum
budget of 1000 function evaluations or driving the step size
parameter αk below 10−5.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 34 / 43

Using radial basis functions in the search step

Testing environment

Test problems
The test set used in the numerical results includes 119 bound
constrained problems and 109 linearly constrained problems coded in
the AMPL format.
In all cases, the stopping criteria consisted of reaching a maximum
budget of 1000 function evaluations or driving the step size
parameter αk below 10−5.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 34 / 43

Using radial basis functions in the search step

Testing environment

Solvers
Pattern – Simple coordinate search with an empty search step.
PSwarm – (our previous approach: Pattern Search with Particle
Swarm step).
RBF – (our new approach: RBF model in the search step), using for
subproblem minimization:

DCA – D.C. algorithm.
fmincon.
DCA Sort – D.C. algorithm (polling order according to RBF model
values).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 35 / 43

Using radial basis functions in the search step

Testing environment

Solvers
Pattern – Simple coordinate search with an empty search step.
PSwarm – (our previous approach: Pattern Search with Particle
Swarm step).
RBF – (our new approach: RBF model in the search step), using for
subproblem minimization:

DCA – D.C. algorithm.
fmincon.
DCA Sort – D.C. algorithm (polling order according to RBF model
values).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 35 / 43

Using radial basis functions in the search step

Testing environment

Solvers
Pattern – Simple coordinate search with an empty search step.
PSwarm – (our previous approach: Pattern Search with Particle
Swarm step).
RBF – (our new approach: RBF model in the search step), using for
subproblem minimization:

DCA – D.C. algorithm.
fmincon.
DCA Sort – D.C. algorithm (polling order according to RBF model
values).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 35 / 43

Using radial basis functions in the search step

Testing environment

Solvers
Pattern – Simple coordinate search with an empty search step.
PSwarm – (our previous approach: Pattern Search with Particle
Swarm step).
RBF – (our new approach: RBF model in the search step), using for
subproblem minimization:

DCA – D.C. algorithm.
fmincon.
DCA Sort – D.C. algorithm (polling order according to RBF model
values).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 35 / 43

Using radial basis functions in the search step

Testing environment

Solvers
Pattern – Simple coordinate search with an empty search step.
PSwarm – (our previous approach: Pattern Search with Particle
Swarm step).
RBF – (our new approach: RBF model in the search step), using for
subproblem minimization:

DCA – D.C. algorithm.
fmincon.
DCA Sort – D.C. algorithm (polling order according to RBF model
values).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 35 / 43

Using radial basis functions in the search step

Testing environment

Solvers
Pattern – Simple coordinate search with an empty search step.
PSwarm – (our previous approach: Pattern Search with Particle
Swarm step).
RBF – (our new approach: RBF model in the search step), using for
subproblem minimization:

DCA – D.C. algorithm.
fmincon.
DCA Sort – D.C. algorithm (polling order according to RBF model
values).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 35 / 43

Using radial basis functions in the search step

Testing environment

Solvers
Pattern – Simple coordinate search with an empty search step.
PSwarm – (our previous approach: Pattern Search with Particle
Swarm step).
RBF – (our new approach: RBF model in the search step), using for
subproblem minimization:

DCA – D.C. algorithm.
fmincon.
DCA Sort – D.C. algorithm (polling order according to RBF model
values).

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 35 / 43

Using radial basis functions in the search step

Numerical results

0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average (10 runs) model sucess percentage (all problems)

τ

ρ

RBF−DCA
RBF−fmincon
RBF−DCA Sort

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 36 / 43

Using radial basis functions in the search step

Numerical results

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average (10 runs) best function value (all problems)

τ

ρ

Pattern
PSwarm
RBF−DCA
RBF−fmincon
RBF−DCA Sort

200 400 600 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 37 / 43

Using radial basis functions in the search step

Numerical results

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data profile with the average of 10 runs (all problems) (τ=10−1)

σ

d s(σ
)

Patte rn
PSwarm
RBF-DCA
RBF-fmincon
RBF-DCA Sort

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 38 / 43

Using radial basis functions in the search step

Numerical results

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data profile with the average of 10 runs (all problems) (τ=10−5)

σ

d s(σ
)

Patte rn
PSwarm
RBF-DCA
RBF-fmincon
RBF-DCA Sort

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 39 / 43

Conclusions

Outline

1 Direct search

2 Using particle swarm in the search step

3 Using radial basis functions in the search step

4 Conclusions

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 40 / 43

Conclusions

Conclusions

Description of two strategies for enhancing the search step of
direct-search algorithms.

Using the search step of direct-search algorithms is advantageous.

Numerical results confirm the improvement in solvers efficiency and
robustness.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 41 / 43

Conclusions

Conclusions

Description of two strategies for enhancing the search step of
direct-search algorithms.

Using the search step of direct-search algorithms is advantageous.

Numerical results confirm the improvement in solvers efficiency and
robustness.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 41 / 43

Conclusions

Conclusions

Description of two strategies for enhancing the search step of
direct-search algorithms.

Using the search step of direct-search algorithms is advantageous.

Numerical results confirm the improvement in solvers efficiency and
robustness.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 41 / 43

The end

References
Le Thi Hoai An, A.I.F. Vaz, and L.N. Vicente.
Optimizing radial basis functions by d.c. programming and its use in
direct search for global derivative-free optimization.
Technical Report 09-37, Univ. Coimbra, 2009.

A.I.F. Vaz and L. N. Vicente.
PSwarm: A hybrid solver for linearly constrained global derivative-free
optimization.
Optimization Methods and Software, 24:669–685, 2009.

A.I.F. Vaz and L.N. Vicente.
A particle swarm pattern search method for bound constrained global
optimization.
Journal of Global Optimization, 39:197–219, 2007.

Yin Zhang and Liyan Gao.
On numerical solution of the maximum volume ellipsoid problem.
SIAM Journal on Optimization, 14:53–76, 2003.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 42 / 43

The end

Optimization 2011 (July 24–27, Portugal)

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 43 / 43

	Outline
	Direct search
	Using particle swarm in the search step
	Using radial basis functions in the search step
	Conclusions
	The end

