Direct search for linearly constrained global optimization
using different search steps

A. Ismael F. Vaz

University of Minho - Portugal
aivaz@dps.uminho.pt

Joint work with Luis Nunes Vicente and Le Thi Hoai An

ICCOPT 2010
July 26-29, 2010

A.LLF. Vaz (UMinho) Using different search steps July 26-29, 2010 1/43



Outline

@ Direct search

A.LLF. Vaz (UMinho) Using different search steps July 26-29, 2010 2 /43



Outline

@ Direct search

© Using particle swarm in the search step

A.LLF. Vaz (UMinho) Using different search steps

July 26-29, 2010

2/ 43



Outline

@ Direct search
© Using particle swarm in the search step

© Using radial basis functions in the search step

A.LLF. Vaz (UMinho) Using different search steps July 26-29, 2010 2 /43



Outline

@ Direct search
© Using particle swarm in the search step
© Using radial basis functions in the search step

@ Conclusions

A.LLF. Vaz (UMinho) Using different search steps July 26-29, 2010 2 /43



Outline

@ Direct search

A.LLF. Vaz (UMinho) Using different search steps July 26-29, 2010 3 /43



Linear-constrained derivative-free optimization

Problem formulation

min f(z)
where
Q={zeR": Az < b, (< z <u},
A € R™*" and b € R™. )

We aim at solving this problem without using derivatives of f.
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Some definitions

Positive spanning set
Is a set of vectors that spans R™ with nonnegative coefficients. J
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Is a set of vectors that spans R™ with nonnegative coefficients.

Examples

Dg ={e1,...,en,—€1,...,—€n}
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Extreme barrier function

fg(a:):{ fz) if zeQ,

400 otherwise.
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A direct-search method

(0) Initialization
Choose xg € 2, ag > 0.
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Let Dy, be a positive spanning set (set of positive generators when there
are linear constraints).
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A direct-search method

(0) Initialization
Choose xg € 2, ag > 0.

For k=0,1,2,...

Let Dy, be a positive spanning set (set of positive generators when there
are linear constraints).

(1) Search step (Optional)
Try to compute a point z in the grid M = {xk + apDypz, z € N'OD’“|}
with
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A direct-search method

(0) Initialization
Choose xg € 2, ag > 0.

For k=0,1,2,...

Let Dy, be a positive spanning set (set of positive generators when there
are linear constraints).

(1) Search step (Optional)
Try to compute a point z in the grid M = {xk + apDypz, z € N'OD’“|}
with

If fa(z) < f(zk) then set x4 = z, declare the iteration and the search
step successful, and skip the poll step.
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A direct-search method

(2) Poll step: Optionally order the poll set P, = {x) + axd : d € Dy}.
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A direct-search method

(2) Poll step: Optionally order the poll set P, = {x) + axd : d € Dy}.

If a poll point =y + agdy is found such that fo(zr + ardr) < f(xk) then
stop polling, set x;.1 = x} + aydy, and declare the iteration and the poll

step successful.
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A direct-search method

(2) Poll step: Optionally order the poll set P, = {x) + axd : d € Dy}.

If a poll point =y + agdy is found such that fo(zr + ardr) < f(xk) then
stop polling, set x;.1 = x} + aydy, and declare the iteration and the poll
step successful.

Otherwise declare the iteration (and the poll step) unsuccessful and set

Th41 = Tk
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A direct-search method

(3) Step size update: If the iteration was successful then maintain the
step size parameter (a1 = ay) or double it (g1 = 2ay) after two
consecutive poll successes along the same direction.
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A direct-search method

(3) Step size update: If the iteration was successful then maintain the
step size parameter (a1 = ay) or double it (g1 = 2ay) after two
consecutive poll successes along the same direction.

If the iteration was unsuccessful, halve the step size parameter
(k1 = ax/2).
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Poll step — linear constraints

The set of polling directions needs to conform with the geometry of the
feasible set.

hs024 e-active constraint
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Positive generators for the tangent cone

No e-active constraints
The set of polling directions Dy, is the positive spanning set Dg,. J
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The set of polling directions Dy, is the positive spanning set Dg,.

For e-active constraint(s)

Dy, is the set of positive generators for the tangent cone of the e-active
constraints (obtained by QR factorization).
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Positive generators for the tangent cone

No e-active constraints
The set of polling directions Dy, is the positive spanning set Dg,.

For e-active constraint(s)

Dy, is the set of positive generators for the tangent cone of the e-active
constraints (obtained by QR factorization).

Degeneracy

The € parameter is dynamically adapted when degeneracy in the e-active
constraints is detected. If no success is attained Dg is used.
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Using particle swarm in the search step
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© Using particle swarm in the search step
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Using particle swarm in the search step

Motivation for using particle swarm

Central idea

A particle swarm iteration is performed in the search step (using several
particles).
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Motivation for using particle swarm

Central idea

A particle swarm iteration is performed in the search step (using several
particles).

Key points

@ In the first iterations the algorithm takes advantage of the particle
swarm ability to find a global optimum (exploiting the search space),
while in the last iterations the algorithm takes advantage of the
direct-search robustness to find a stationary point.
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Motivation for using particle swarm

Central idea

A particle swarm iteration is performed in the search step (using several
particles).

Key points

@ In the first iterations the algorithm takes advantage of the particle
swarm ability to find a global optimum (exploiting the search space),
while in the last iterations the algorithm takes advantage of the
direct-search robustness to find a stationary point.

@ The number of particles in the swarm can be decreased along the
iterations (no need to have a large number of particles around a local
optimum).
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Using particle swarm in the search step

Particle Swarm (new position and velocity)

The new particle position is updated by
Update particle

P _ P P _
Ty 1 =T+ Vg, p=1,...,s.

vh, 1 is the new velocity given by
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Particle Swarm (new position and velocity)

The new particle position is updated by

Update particle

P _ P P _
Ty 1 =T+ Vg, p=1,...,s.

vh, 1 is the new velocity given by

Update velocity

Ry = o+ pong s (8~ a2) + v o (a1 — ),

where i, pu and v are parameters and wy; and woy are random vectors
drawn from the uniform (0, 1) distribution.
T}, is the best particle p position and zy, is the best population position.
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Using particle swarm in the search step

Particle Swarm (new position and velocity)

The new particle position is updated by

Update particle

P _ P P _
Ty 1 =T+ Vg, p=1,...,s.

vh, 1 is the new velocity given by

Update velocity

Ry = o+ pong s (8~ a2) + v o (a1 — ),

where i, pu and v are parameters and wy; and woy are random vectors
drawn from the uniform (0, 1) distribution.
T}, is the best particle p position and zy, is the best population position.

Poll step
It is performed on x, i.e., on the best population position (leader). J
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Using particle swarm in the search step

Feasible initial population

Getting an initial feasible population allows a more efficient search for the

global optimum.
hs024 feasible region
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Search step (Particle Swarm)

Feasibility is kept during the optimization process for all particles. This is
achieved by introducing a maximum allowed step in the search direction.

hs024 after 10 iterations and 5 succ. poll steps

.

35
Maximum allowed step s B,
25
P _ D D
Thyp1 = Tp T YmazViy o
where 4, is the maximum step 1
p . . 05
allowed to keep z;_, inside the )
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Testing environment — bound constrained

Test problems
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Using particle swarm in the search step

Testing environment — bound constrained

Test problems
@ 122 problems.
@ Including 12 are of large dimension (100-300 variables).

Solvers used
@ ASA — Adaptative Simulated Annealing.
@ PSwarm — (our approach: Pattern Search with Particle Swarm step).
o PGAPack — Parallel Genetic Algorithms Package.
@ Direct — Dividing Rectangles.
o MCS — Multilevel Coordinate Search.
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Numerical results (final value for f)

Average objective value of 30 runs with maxf=1000 (7500)
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Using particle swarm in the search step

Numerical results (number of evaluations)

Average objective evaluation of 30 runs with maxf=1000
1 I

0.1 I%E:é%gk ] 0.65
Average number of objective function evaluations.
mazxf ASA PGAPack PSwarm Direct MCS
1000 857 1009* 686  1107* 1837*
10000 5047  10009* 3603 11517* 4469
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Using particle swarm in the search step
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Test problems

A.LLF. Vaz (UMinho) Using different search steps July 26-29, 2010 19 / 43



Using particle swarm in the search step

Testing environment — linear constrained

Test problems

@ 120 problems with linear constraints were collected from 1564
optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
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Using particle swarm in the search step

Testing environment — linear constrained

Test problems
@ 120 problems with linear constraints were collected from 1564
optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
@ 23 linear, 55 quadratic and 32 general nonlinear.

@ 10 highly non-convex objective functions with random generated linear
constraints (Pinter).

v

Solvers used
@ PSwarm — (our approach: Pattern Search with Particle Swarm step).
@ ASA - Adaptative Simulated Annealing.
@ Direct — Dividing Rectangles.
e NOMAD - A blackbox optimization software (MATLAB version).
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Using particle swarm in the sea step

Linear objective functions

Objective function values (average of 10 runs with maxf=2000, linear objective)

1 T T T T T T T T 1
0.95
0.8 . 1 1= 09
k
,,,,,,,,,,,,,,,,,,,,,,,,,, 0.85
0.6 S
g § 08
« |\ I . __ X -0~ a
o4 0.75
o 107
x - PSwarm
02 —*— ASA T ¢ 0.65
—O— - Direct F-% los
— $ — Nomad
0 ! . ! : 0.55
12 14 16 18 201 11 12
v v

A.l.F. Vaz Minh Using different search steps July 26-29, 2010 20 / 43



Using particle swarm in the sea step

Quadratic objective functions

Objective function values (average of 10 runs with maxf=2000, quadratic objective)
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particle swarm in the search step

General nonlinear objective functions
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Using particle swarm in the seal step

All objective functions

Objective function values (average of 10 runs with maxf=2000)
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Using particle swarm in the sea step

Highly non-convex objective functions

Objective function values (average of 10 runs with maxf=10000, non-convex problems)
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Using particle swarm in the search step

Highly non-convex objective functions

Objective function values (average of 10 runs with maxf=10000, non-convex problems)
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For further details see Vaz and Vicente, OMS, 2009.
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Using radial basis functions in the search step
Outline

© Using radial basis functions in the search step
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Motivation for using RBFs

Main idea
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Main idea
@ To take advantage of direct-search methods of directional type where
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Motivation for using RBFs

Main idea
@ To take advantage of direct-search methods of directional type where
the iterations can be divided into two main steps (a search step and a
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o Consists of forming and minimizing an Radial Basis Function (RBF)
model in the search step.
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Motivation for using RBFs

Main idea

@ To take advantage of direct-search methods of directional type where
the iterations can be divided into two main steps (a search step and a
poll step).

o Consists of forming and minimizing an Radial Basis Function (RBF)
model in the search step.

@ The RBF model can be used to order the poll set of directions.
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Radial Basis Functions (RBFs)

In order to interpolate a function f whose values on a set
Y ={y!,...,y™} C R" are known, one can use a RBF model of the form

m(z) = 3 No(lz — vl
i=1

where ¢(]| - ||), with ¢ : Ry — R, is a radial basis function and
Al,. .., Ap, € R are parameters to be determined.

A.LLF. Vaz (UMinho) Using different search steps July 26-29, 2010 27 / 43



Using radial basis functions in the search step

Radial Basis Functions (RBFs)

In order to interpolate a function f whose values on a set
Y ={y!,...,y™} C R" are known, one can use a RBF model of the form

m(z) = 3 No(lz — vl
i=1

where ¢(]| - ||), with ¢ : Ry — R, is a radial basis function and
Al,. .., Ap, € R are parameters to be determined.

Property
For m(z) to be C?, the function ¢(x) must be both C? and ¢/(0) = 0. J
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Radial Basis Functions (RBFs)

In many applications, it is desirable that the linear space spanned by the
basis functions includes constant or linear functions.

One can augment RBF model by allowing a low-order polynomial tail. The
new model is now of the form

m(z) = Y No(lz— ')+ ) vps(x),
i=1 J=0

where pj(x), j =0,...,q, are some basis functions for the polynomial and
Y05 -+ -5 Vg eR.
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Radial Basis Functions (RBFs)

The coefficients \'s are required to satisfy
Tp
> Apiy') =0, j=0,....q.
i=1

These, in conjunction with the interpolation conditions m(y?) = f(y*),
i=1,...,np, give the linear system

@ Pl[A]_[fv)
PT0fl~y] | 0O |’
where ®;; = 6(|ly’ — y7|) for i,j € {1,...,m,}, Pyj = p;(y’") for

ie{l,....,np}, j€{0,...,q}, and f(Y) is the vector formed by the
values f(y'),..., f(y").
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Radial Basis Functions (RBFs)

The polynomial tails most frequently used in the context of RBF are linear,
and we will write t(z) = ¢+ g 'z and

np

m(x) = S Moz —yll) + t(a).
=1

This model has 7, +n + 1 parameters, n,, for the radial basis terms and
n + 1 for the linear polynomial terms.
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Using radial basis functions in the search step

Radial Basis Functions (RBFs)

Common/Used approach

Common approaches for derivative-free optimization use cubic RBFs and
linear polynomial tails

np

m(z) = Y Aillz — ' |° +t(2).
i=1
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Constraints handling

Bound constraints
They can simply be considered in the minimization of the RBF model. J
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Constraints handling

Bound constraints J

They can simply be considered in the minimization of the RBF model.

Linear constraints
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Constraints handling

Bound constraints J

They can simply be considered in the minimization of the RBF model.

Linear constraints

@ They are temporarily removed from the RBF model minimization and
then we project the minimizer onto €.

@ For a feasible initial guess and the set of poll directions we use the
same strategies already shown.
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RBF model subproblem

Thus, the RBF model subproblem we are addressing is
min m(z) st. x € Q,

where ) is the feasible region defined by upper and lower bounds on the
variables, i.e., Q = [(,u] N Boo(x1; 00t,).
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RBF model subproblem

Thus, the RBF model subproblem we are addressing is
min m(z) st. x € Q,

where ) is the feasible region defined by upper and lower bounds on the
variables, i.e., Q = [(,u] N Boo(x1; 00t,).

Solvers used for subproblems

o Difference of Convex (D.C.) algorithm, in order to take advantage of
the RBF structure.

o fmincon from the MATLAB optimization toolbox.
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Using radial basis functions in the search step

Testing environment

Test problems

A.LLF. Vaz (UMinho) Using different search steps July 26-29, 2010 34 / 43



Using radial basis functions in the search step

Testing environment

Test problems

@ The test set used in the numerical results includes 119 bound
constrained problems and 109 linearly constrained problems coded in
the AMPL format.

A.LLF. Vaz (UMinho) Using different search steps July 26-29, 2010 34 / 43



Using radial basis functions in the search step

Testing environment

Test problems

@ The test set used in the numerical results includes 119 bound

constrained problems and 109 linearly constrained problems coded in
the AMPL format.

@ In all cases, the stopping criteria consisted of reaching a maximum
budget of 1000 function evaluations or driving the step size
parameter oy, below 107°.
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Swarm step).
@ RBF — (our new approach: RBF model in the search step), using for
subproblem minimization:

o DCA - D.C. algorithm.
o fmincon.

A.LLF. Vaz (UMinho) Using different search steps July 26-29, 2010 35 /43



Using radial basis functions in the search step

Testing environment

Solvers
@ Pattern — Simple coordinate search with an empty search step.
@ PSwarm — (our previous approach: Pattern Search with Particle
Swarm step).
@ RBF — (our new approach: RBF model in the search step), using for
subproblem minimization:

o DCA - D.C. algorithm.

e fmincon.
e DCA Sort — D.C. algorithm (polling order according to RBF model

values).
v
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Using radial basis functions in the search step

Numerical results

Average (10 runs) model sucess percentage (all problems)
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Using radial basis functions in the seal

step

Numerical results

Data profile with the average of 10 runs (all problems) (1:10'1)
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Numerical results

Data profile with the average of 10 runs (all problems) (1:10'5)
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Outline

@ Conclusions
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Conclusions

@ Description of two strategies for enhancing the search step of
direct-search algorithms.

@ Using the search step of direct-search algorithms is advantageous.

@ Numerical results confirm the improvement in solvers efficiency and
robustness.
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