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Direct search

Linear-constrained derivative-free optimization

Problem formulation

min
x∈Ω

f(x)

where
Ω = {x ∈ Rn : Ax ≤ b, ` ≤ x ≤ u},

A ∈ Rm×n and b ∈ Rm.

We aim at solving this problem without using derivatives of f .
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Direct search

Some definitions

Positive spanning set
Is a set of vectors that spans Rn with nonnegative coefficients.

Examples

D⊕ = {e1, . . . , en,−e1, . . . ,−en}

D⊗ = {e1, . . . , en,−e1, . . . ,−en, e,−e}

Extreme barrier function

fΩ(x) =
{
f(x) if x ∈ Ω,
+∞ otherwise.
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Direct search

A direct-search method

(0) Initialization
Choose x0 ∈ Ω, α0 > 0.

For k = 0, 1, 2, . . .

Let Dk be a positive spanning set (set of positive generators when there
are linear constraints).

(1) Search step (Optional)
Try to compute a point x in the grid Mk =

{
xk + αkDkz, z ∈ N|Dk|

0

}
with

fΩ(x) < f(xk).

If fΩ(x) < f(xk) then set xk+1 = x, declare the iteration and the search
step successful, and skip the poll step.
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Direct search

A direct-search method

(2) Poll step: Optionally order the poll set Pk = {xk + αkd : d ∈ Dk}.

If a poll point xk + αkdk is found such that fΩ(xk + αkdk) < f(xk) then
stop polling, set xk+1 = xk + αkdk, and declare the iteration and the poll
step successful.

Otherwise declare the iteration (and the poll step) unsuccessful and set
xk+1 = xk.
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Direct search

A direct-search method

(3) Step size update: If the iteration was successful then maintain the
step size parameter (αk+1 = αk) or double it (αk+1 = 2αk) after two
consecutive poll successes along the same direction.

If the iteration was unsuccessful, halve the step size parameter
(αk+1 = αk/2).
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Direct search

Poll step — linear constraints

The set of polling directions needs to conform with the geometry of the
feasible set.
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Direct search

Positive generators for the tangent cone

No ε-active constraints
The set of polling directions Dk is the positive spanning set D⊗.

For ε-active constraint(s)

Dk is the set of positive generators for the tangent cone of the ε-active
constraints (obtained by QR factorization).

Degeneracy
The ε parameter is dynamically adapted when degeneracy in the ε-active
constraints is detected. If no success is attained D⊗ is used.
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Using particle swarm in the search step

Motivation for using particle swarm

Central idea
A particle swarm iteration is performed in the search step (using several
particles).

Key points
In the first iterations the algorithm takes advantage of the particle
swarm ability to find a global optimum (exploiting the search space),
while in the last iterations the algorithm takes advantage of the
direct-search robustness to find a stationary point.
The number of particles in the swarm can be decreased along the
iterations (no need to have a large number of particles around a local
optimum).
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Using particle swarm in the search step

Particle Swarm (new position and velocity)

The new particle position is updated by

Update particle

xp
k+1 = xp

k + vp
k+1, p = 1, . . . , s.

vp
k+1 is the new velocity given by

Update velocity

vp
k+1 = ιkv

p
k + µω1k •

(
x̄p

k − x
p
k

)
+ νω2k •

(
xk − xp

k

)
,

where ιk, µ and ν are parameters and ω1k and ω2k are random vectors
drawn from the uniform (0, 1) distribution.
x̄p

k is the best particle p position and xk is the best population position.

Poll step

It is performed on xk, i.e., on the best population position (leader).
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Using particle swarm in the search step

Feasible initial population

Getting an initial feasible population allows a more efficient search for the
global optimum.
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Using particle swarm in the search step

Search step (Particle Swarm)

Feasibility is kept during the optimization process for all particles. This is
achieved by introducing a maximum allowed step in the search direction.

Maximum allowed step

xp
k+1 = xp

k + αmaxv
p
k+1,

where αmax is the maximum step
allowed to keep xp

k+1 inside the
feasible region.
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Using particle swarm in the search step

Testing environment — bound constrained

Test problems
122 problems.
Including 12 are of large dimension (100-300 variables).

Solvers used
ASA – Adaptative Simulated Annealing.
PSwarm – (our approach: Pattern Search with Particle Swarm step).
PGAPack – Parallel Genetic Algorithms Package.
Direct – Dividing Rectangles.
MCS – Multilevel Coordinate Search.
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Using particle swarm in the search step

Numerical results (final value for f)
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For further details see Vaz and Vicente, JOGO, 2007.
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Using particle swarm in the search step

Numerical results (number of evaluations)
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maxf ASA PGAPack PSwarm Direct MCS
1000 857 1009∗ 686 1107∗ 1837∗

10000 5047 10009∗ 3603 11517∗ 4469
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Using particle swarm in the search step

Testing environment — linear constrained

Test problems
120 problems with linear constraints were collected from 1564
optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
23 linear, 55 quadratic and 32 general nonlinear.
10 highly non-convex objective functions with random generated linear
constraints (Pinter).

Solvers used
PSwarm – (our approach: Pattern Search with Particle Swarm step).
ASA – Adaptative Simulated Annealing.
Direct – Dividing Rectangles.
NOMAD – A blackbox optimization software (MATLAB version).
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Using particle swarm in the search step

Linear objective functions
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Using particle swarm in the search step

Quadratic objective functions
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Using particle swarm in the search step

General nonlinear objective functions
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Using particle swarm in the search step

All objective functions
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Using particle swarm in the search step

Highly non-convex objective functions
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For further details see Vaz and Vicente, OMS, 2009.
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Using radial basis functions in the search step
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1 Direct search
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Using radial basis functions in the search step

Motivation for using RBFs

Main idea
To take advantage of direct-search methods of directional type where
the iterations can be divided into two main steps (a search step and a
poll step).

Consists of forming and minimizing an Radial Basis Function (RBF)
model in the search step.

The RBF model can be used to order the poll set of directions.
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Using radial basis functions in the search step

Radial Basis Functions (RBFs)

In order to interpolate a function f whose values on a set
Y = {y1, . . . , ynp} ⊂ Rn are known, one can use a RBF model of the form

m(x) =
np∑
i=1

λiφ(‖x− yi‖),

where φ(‖ · ‖), with φ : R+ → R, is a radial basis function and
λ1, . . . , λnp ∈ R are parameters to be determined.

Property

For m(x) to be C2, the function φ(x) must be both C2 and φ′(0) = 0.
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Using radial basis functions in the search step

Radial Basis Functions (RBFs)

In many applications, it is desirable that the linear space spanned by the
basis functions includes constant or linear functions.

One can augment RBF model by allowing a low-order polynomial tail. The
new model is now of the form

m(x) =
np∑
i=1

λiφ(‖x− yi‖) +
q∑

j=0

γjpj(x),

where pj(x), j = 0, . . . , q, are some basis functions for the polynomial and
γ0, . . . , γq ∈ R.
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Using radial basis functions in the search step

Radial Basis Functions (RBFs)

The coefficients λ’s are required to satisfy

np∑
i=1

λipj(yi) = 0, j = 0, . . . , q.

These, in conjunction with the interpolation conditions m(yi) = f(yi),
i = 1, . . . , np, give the linear system[

Φ P
P> 0

] [
λ
γ

]
=
[
f(Y )

0

]
,

where Φij = φ(‖yi − yj‖) for i, j ∈ {1, . . . , np}, Pij = pj(yi) for
i ∈ {1, . . . , np}, j ∈ {0, . . . , q}, and f(Y ) is the vector formed by the
values f(y1), . . . , f(ynp).
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Using radial basis functions in the search step

Radial Basis Functions (RBFs)

The polynomial tails most frequently used in the context of RBF are linear,
and we will write t(x) = c+ g>x and

m(x) =
np∑
i=1

λiφ(‖x− yi‖) + t(x).

This model has np + n+ 1 parameters, np for the radial basis terms and
n+ 1 for the linear polynomial terms.
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Using radial basis functions in the search step

Radial Basis Functions (RBFs)

Common/Used approach

Common approaches for derivative-free optimization use cubic RBFs and
linear polynomial tails

m(x) =
np∑
i=1

λi‖x− yi‖3 + t(x).
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Using radial basis functions in the search step

Constraints handling

Bound constraints
They can simply be considered in the minimization of the RBF model.

Linear constraints
They are temporarily removed from the RBF model minimization and
then we project the minimizer onto Ω.
For a feasible initial guess and the set of poll directions we use the
same strategies already shown.
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Using radial basis functions in the search step

RBF model subproblem

Thus, the RBF model subproblem we are addressing is

min m(x) s.t. x ∈ Ω̄,

where Ω̄ is the feasible region defined by upper and lower bounds on the
variables, i.e., Ω̄ = [`, u] ∩B∞(xk;σαk).

Solvers used for subproblems

Difference of Convex (D.C.) algorithm, in order to take advantage of
the RBF structure.
fmincon from the MATLAB optimization toolbox.
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Using radial basis functions in the search step

Testing environment

Test problems
The test set used in the numerical results includes 119 bound
constrained problems and 109 linearly constrained problems coded in
the AMPL format.
In all cases, the stopping criteria consisted of reaching a maximum
budget of 1000 function evaluations or driving the step size
parameter αk below 10−5.
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Using radial basis functions in the search step

Testing environment

Solvers
Pattern – Simple coordinate search with an empty search step.
PSwarm – (our previous approach: Pattern Search with Particle
Swarm step).
RBF – (our new approach: RBF model in the search step), using for
subproblem minimization:

DCA – D.C. algorithm.
fmincon.
DCA Sort – D.C. algorithm (polling order according to RBF model
values).
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Using radial basis functions in the search step

Numerical results
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Using radial basis functions in the search step

Numerical results
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Conclusions

Conclusions

Description of two strategies for enhancing the search step of
direct-search algorithms.

Using the search step of direct-search algorithms is advantageous.

Numerical results confirm the improvement in solvers efficiency and
robustness.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 41 / 43



Conclusions

Conclusions

Description of two strategies for enhancing the search step of
direct-search algorithms.

Using the search step of direct-search algorithms is advantageous.

Numerical results confirm the improvement in solvers efficiency and
robustness.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 41 / 43



Conclusions

Conclusions

Description of two strategies for enhancing the search step of
direct-search algorithms.

Using the search step of direct-search algorithms is advantageous.

Numerical results confirm the improvement in solvers efficiency and
robustness.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 41 / 43



The end

References
Le Thi Hoai An, A.I.F. Vaz, and L.N. Vicente.
Optimizing radial basis functions by d.c. programming and its use in
direct search for global derivative-free optimization.
Technical Report 09-37, Univ. Coimbra, 2009.

A.I.F. Vaz and L. N. Vicente.
PSwarm: A hybrid solver for linearly constrained global derivative-free
optimization.
Optimization Methods and Software, 24:669–685, 2009.

A.I.F. Vaz and L.N. Vicente.
A particle swarm pattern search method for bound constrained global
optimization.
Journal of Global Optimization, 39:197–219, 2007.

Yin Zhang and Liyan Gao.
On numerical solution of the maximum volume ellipsoid problem.
SIAM Journal on Optimization, 14:53–76, 2003.

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 42 / 43



The end

Optimization 2011 (July 24–27, Portugal)

A.I.F. Vaz (UMinho) Using different search steps July 26-29, 2010 43 / 43


	Outline
	Direct search
	Using particle swarm in the search step
	Using radial basis functions in the search step
	Conclusions
	The end

