Direct search for linearly constrained global optimization using different search steps

A. Ismael F. Vaz

University of Minho - Portugal aivaz@dps.uminho.pt

Joint work with Luis Nunes Vicente and Le Thi Hoai An

ICCOPT 2010

July 26-29, 2010

A.I.F. Vaz (UMinho)

Using different search steps

July 26-29, 2010 1 / 43

Using particle swarm in the search step

Using radial basis functions in the search step

Conclusions

э

(日) (同) (三) (三)

2 Using particle swarm in the search step

Using radial basis functions in the search step

4 Conclusions

э

(日) (同) (三) (三)

- 2 Using particle swarm in the search step
- Osing radial basis functions in the search step
 - 4 Conclusions

・ 伺 ト ・ ヨ ト ・ ヨ ト

- 34

- 2 Using particle swarm in the search step
- Osing radial basis functions in the search step
 - 4 Conclusions

- 31

3 × 4 3 ×

< 17 × <

Using particle swarm in the search step

3 Using radial basis functions in the search step

4 Conclusions

э

(日) (同) (三) (三)

Linear-constrained derivative-free optimization

Problem formulation

$$\min_{x \in \Omega} f(x)$$

where

$$\Omega = \{ x \in \mathbb{R}^n : Ax \le b, \ell \le x \le u \},$$

 $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

We aim at solving this problem without using derivatives of f.

A.I.F. Vaz (UMinho)

Using different search steps

July 26-29, 2010 4 / 43

- 3

・ 伺 ト ・ ヨ ト ・ ヨ ト

Some definitions

Positive spanning set

Is a set of vectors that spans \mathbb{R}^n with nonnegative coefficients.

Examples

$$D_{\oplus} = \{e_1, \ldots, e_n, -e_1, \ldots, -e_n\}$$

$$D_{\otimes} = \{e_1, \ldots, e_n, -e_1, \ldots, -e_n, e, -e\}$$

Extreme barrier function

$$f_{\Omega}(x) = \left\{ egin{array}{cc} f(x) & ext{if} \ x \in \Omega, \ +\infty & ext{otherwise.} \end{array}
ight.$$

A.I.F. Vaz (UMinho)

July 26-29, 2010

- 20

5 / 43

(日) (同) (三) (三)

Some definitions

Positive spanning set

Is a set of vectors that spans \mathbb{R}^n with nonnegative coefficients.

Examples

$$D_{\oplus} = \{e_1, \ldots, e_n, -e_1, \ldots, -e_n\}$$

$$D_{\otimes} = \{e_1, \ldots, e_n, -e_1, \ldots, -e_n, e, -e\}$$

Extreme barrier function

$$f_{\Omega}(x) = \left\{ egin{array}{cc} f(x) & ext{if} \ x \in \Omega, \ +\infty & ext{otherwise.} \end{array}
ight.$$

A.I.F. Vaz (UMinho)

July 26-29, 2010

5 / 43

(日) (周) (日) (日) (日)

Some definitions

Positive spanning set

Is a set of vectors that spans \mathbb{R}^n with nonnegative coefficients.

Examples

$$D_{\oplus} = \{e_1, \dots, e_n, -e_1, \dots, -e_n\}$$

$$D_{\otimes} = \{e_1, \ldots, e_n, -e_1, \ldots, -e_n, e, -e\}$$

Extreme barrier function

$$f_{\Omega}(x) = \begin{cases} f(x) & \text{if } x \in \Omega, \\ +\infty & \text{otherwise.} \end{cases}$$

(日) (周) (日) (日) (日)

(0) Initialization Choose $x_0 \in \Omega$, $\alpha_0 > 0$.

For $k = 0, 1, 2, \dots$

Let D_k be a positive spanning set (set of positive generators when there are linear constraints).

(1) Search step (Optional)

Try to compute a point x in the grid $M_k = \left\{ x_k + lpha_k D_k z, \ z \in \mathbb{N}_0^{|D_k|} \right\}$ with

$$f_{\Omega}(x) < f(x_k).$$

If $f_{\Omega}(x) < f(x_k)$ then set $x_{k+1} = x$, declare the iteration and the search step successful, and skip the poll step.

(0) Initialization Choose $x_0 \in \Omega$, $\alpha_0 > 0$.

For k = 0, 1, 2, ...

Let D_k be a positive spanning set (set of positive generators when there are linear constraints).

(1) Search step (Optional)

Try to compute a point x in the grid $M_k=\left\{x_k+lpha_k D_k z,\; z\in \mathbb{N}_0^{|\mathcal{D}_k|}
ight\}$ with

 $f_{\Omega}(x) < f(x_k).$

If $f_{\Omega}(x) < f(x_k)$ then set $x_{k+1} = x$, declare the iteration and the search step successful, and skip the poll step.

A.I.F. Vaz (UMinho)

Using different search steps

July 26-29, 2010 6 / 43

(0) Initialization Choose $x_0 \in \Omega$, $\alpha_0 > 0$.

For k = 0, 1, 2, ...

Let D_k be a positive spanning set (set of positive generators when there are linear constraints).

(1) Search step (Optional)

Try to compute a point x in the grid $M_k=\left\{x_k+\alpha_k D_k z,\ z\in\mathbb{N}_0^{|D_k|}\right\}$ with

$$f_{\Omega}(x) < f(x_k).$$

If $f_{\Omega}(x) < f(x_k)$ then set $x_{k+1} = x$, declare the iteration and the search step successful, and skip the poll step.

(0) Initialization Choose $x_0 \in \Omega$, $\alpha_0 > 0$.

For k = 0, 1, 2, ...

Let D_k be a positive spanning set (set of positive generators when there are linear constraints).

(1) Search step (Optional)

Try to compute a point x in the grid $M_k = \left\{ x_k + \alpha_k D_k z, \ z \in \mathbb{N}_0^{|D_k|} \right\}$ with

$$f_{\Omega}(x) < f(x_k).$$

If $f_{\Omega}(x) < f(x_k)$ then set $x_{k+1} = x$, declare the iteration and the search step successful, and skip the poll step.

A.I.F. Vaz (UMinho)

(2) Poll step: Optionally order the poll set $P_k = \{x_k + \alpha_k d : d \in D_k\}$.

If a poll point $x_k + \alpha_k d_k$ is found such that $f_{\Omega}(x_k + \alpha_k d_k) < f(x_k)$ then stop polling, set $x_{k+1} = x_k + \alpha_k d_k$, and declare the iteration and the poll step successful.

Otherwise declare the iteration (and the poll step) unsuccessful and set $x_{k+1} = x_k$.

< □ > < □ > < □ > < □ > < □ > < □ >

(2) Poll step: Optionally order the poll set $P_k = \{x_k + \alpha_k d : d \in D_k\}$.

If a poll point $x_k + \alpha_k d_k$ is found such that $f_{\Omega}(x_k + \alpha_k d_k) < f(x_k)$ then stop polling, set $x_{k+1} = x_k + \alpha_k d_k$, and declare the iteration and the poll step successful.

Otherwise declare the iteration (and the poll step) unsuccessful and set $x_{k+1} = x_k$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(2) Poll step: Optionally order the poll set $P_k = \{x_k + \alpha_k d : d \in D_k\}$.

If a poll point $x_k + \alpha_k d_k$ is found such that $f_{\Omega}(x_k + \alpha_k d_k) < f(x_k)$ then stop polling, set $x_{k+1} = x_k + \alpha_k d_k$, and declare the iteration and the poll step successful.

Otherwise declare the iteration (and the poll step) unsuccessful and set $x_{k+1} = x_k$.

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

(3) Step size update: If the iteration was successful then maintain the step size parameter $(\alpha_{k+1} = \alpha_k)$ or double it $(\alpha_{k+1} = 2\alpha_k)$ after two consecutive poll successes along the same direction.

If the iteration was unsuccessful, halve the step size parameter $(\alpha_{k+1} = \alpha_k/2)$.

イロト イポト イヨト イヨト 二日

(3) Step size update: If the iteration was successful then maintain the step size parameter ($\alpha_{k+1} = \alpha_k$) or double it ($\alpha_{k+1} = 2\alpha_k$) after two consecutive poll successes along the same direction.

If the iteration was unsuccessful, halve the step size parameter $(\alpha_{k+1} = \alpha_k/2)$.

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Poll step — linear constraints

The set of polling directions needs to conform with the geometry of the feasible set.

A.I.F. Vaz (UMinho)

Using different search steps

July 26-29, 2010 9 / 43

Positive generators for the tangent cone

No ϵ -active constraints

The set of polling directions D_k is the positive spanning set D_{\otimes} .

For ϵ -active constraint(s)

 D_k is the set of positive generators for the tangent cone of the ϵ -active constraints (obtained by QR factorization).

Degeneracy

The ϵ parameter is dynamically adapted when degeneracy in the ϵ -active constraints is detected. If no success is attained D_{\otimes} is used.

Positive generators for the tangent cone

No ϵ -active constraints

The set of polling directions D_k is the positive spanning set D_{\otimes} .

For ϵ -active constraint(s)

 D_k is the set of positive generators for the tangent cone of the ϵ -active constraints (obtained by QR factorization).

Degeneracy

The ϵ parameter is dynamically adapted when degeneracy in the ϵ -active constraints is detected. If no success is attained D_{\otimes} is used.

Positive generators for the tangent cone

No ϵ -active constraints

The set of polling directions D_k is the positive spanning set D_{\otimes} .

For ϵ -active constraint(s)

 D_k is the set of positive generators for the tangent cone of the ϵ -active constraints (obtained by QR factorization).

Degeneracy

The ϵ parameter is dynamically adapted when degeneracy in the ϵ -active constraints is detected. If no success is attained D_{\otimes} is used.

2 Using particle swarm in the search step

3) Using radial basis functions in the search step

4 Conclusions

3

11 / 43

・ 伺 ト ・ ヨ ト ・ ヨ ト

Central idea

A particle swarm iteration is performed in the search step (using several particles).

Key points

- In the first iterations the algorithm takes advantage of the particle swarm ability to find a global optimum (exploiting the search space), while in the last iterations the algorithm takes advantage of the direct-search robustness to find a stationary point.
- The number of particles in the swarm can be decreased along the iterations (no need to have a large number of particles around a local optimum).

Central idea

A particle swarm iteration is performed in the search step (using several particles).

Key points

- In the first iterations the algorithm takes advantage of the particle swarm ability to find a global optimum (exploiting the search space), while in the last iterations the algorithm takes advantage of the direct-search robustness to find a stationary point.
- The number of particles in the swarm can be decreased along the iterations (no need to have a large number of particles around a local optimum).

< □ > < □ > < □ > < □ > < □ > < □ >

Central idea

A particle swarm iteration is performed in the search step (using several particles).

Key points

- In the first iterations the algorithm takes advantage of the particle swarm ability to find a global optimum (exploiting the search space), while in the last iterations the algorithm takes advantage of the direct-search robustness to find a stationary point.
- The number of particles in the swarm can be decreased along the iterations (no need to have a large number of particles around a local optimum).

イロト 不得下 イヨト イヨト

Central idea

A particle swarm iteration is performed in the search step (using several particles).

Key points

- In the first iterations the algorithm takes advantage of the particle swarm ability to find a global optimum (exploiting the search space), while in the last iterations the algorithm takes advantage of the direct-search robustness to find a stationary point.
- The number of particles in the swarm can be decreased along the iterations (no need to have a large number of particles around a local optimum).

イロト イポト イヨト イヨト

Particle Swarm (new position and velocity)

The new particle position is updated by

Update particle

$$x_{k+1}^p = x_k^p + v_{k+1}^p, \quad p = 1, \dots, s.$$

 \boldsymbol{v}_{k+1}^p is the new velocity given by

Update velocity

$$v_{k+1}^p = \iota_k v_k^p + \mu \omega_{1k} \bullet \left(\bar{x}_k^p - x_k^p \right) + \nu \omega_{2k} \bullet \left(x_k - x_k^p \right),$$

where ι_k , μ and ν are parameters and ω_{1k} and ω_{2k} are random vectors drawn from the uniform (0,1) distribution.

 $ar{x}_k^p$ is the best particle p position and x_k is the best population position.

Poll step

It is performed on x_k , i.e., on the best population position (leader).

A.I.F. Vaz (UMinho)

Using different search steps

Particle Swarm (new position and velocity)

The new particle position is updated by

Update particle

$$x_{k+1}^p = x_k^p + v_{k+1}^p, \quad p = 1, \dots, s.$$

 \boldsymbol{v}_{k+1}^p is the new velocity given by

Update velocity

$$v_{k+1}^p = \iota_k v_k^p + \mu \omega_{1k} \bullet \left(\bar{x}_k^p - x_k^p \right) + \nu \omega_{2k} \bullet \left(x_k - x_k^p \right),$$

where ι_k , μ and ν are parameters and ω_{1k} and ω_{2k} are random vectors drawn from the uniform (0,1) distribution.

 \bar{x}_k^p is the best particle p position and x_k is the best population position.

Poll step

It is performed on x_k , i.e., on the best population position (leader).

A.I.F. Vaz (UMinho)

Using different search steps

Particle Swarm (new position and velocity)

The new particle position is updated by

Update particle

$$x_{k+1}^p = x_k^p + v_{k+1}^p, \quad p = 1, \dots, s.$$

 \boldsymbol{v}_{k+1}^p is the new velocity given by

Update velocity

$$v_{k+1}^p = \iota_k v_k^p + \mu \omega_{1k} \bullet \left(\bar{x}_k^p - x_k^p \right) + \nu \omega_{2k} \bullet \left(x_k - x_k^p \right),$$

where ι_k , μ and ν are parameters and ω_{1k} and ω_{2k} are random vectors drawn from the uniform (0,1) distribution.

 \bar{x}_k^p is the best particle p position and x_k is the best population position.

Poll step

It is performed on x_k , i.e., on the best population position (leader).

Feasible initial population

Getting an initial feasible population allows a more efficient search for the global optimum.

Zhang and Gao interior-point code is being used to compute the maximum volume ellipsoid.

14 / 43

A.I.F. Vaz (UMinho)

July 26-29, 2010

Search step (Particle Swarm)

Feasibility is kept during the optimization process for all particles. This is achieved by introducing a maximum allowed step in the *search direction*.

15 / 43

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

Testing environment — bound constrained

Test problems

- 122 problems.
- Including 12 are of large dimension (100-300 variables).

Solvers used

- ASA Adaptative Simulated Annealing.
- PSwarm (pur approach: Pattern Search with Particle Swarm step)
- PGAPack Parallel Genetic Algorithms Package.
- Direct Dividing Rectangles...
- MCS Multilevel Coordinate Search.

э

16 / 43

Testing environment — bound constrained

Test problems

- 122 problems.
- Including 12 are of large dimension (100-300 variables).

Solvers used

- ASA Adaptative Simulated Annealing.
- PSwarm (pur approach: Pattern Search with Particle Swarm step)
- PGAPack Parallel Genetic Algorithms Package:
- Direct Dividing Rectangles...
- MCS Multilevel Coordinate Search

э

16 / 43

Testing environment — bound constrained

Test problems

- 122 problems.
- Including 12 are of large dimension (100-300 variables).

Solvers used

- ASA Adaptative Simulated Annealing
- PSwarm (our approach: Pattern Search with Particle Swarm step).
- PGAPack Parallel Genetic Algorithms Package.
- Direct Dividing Rectangles...
- MCS Multilevel Coordinate Search.

э

16 / 43
Test problems

- 122 problems.
- Including 12 are of large dimension (100-300 variables).

Solvers used

- ASA Adaptative Simulated Annealing.
- PSwarm (our approach: Pattern Search with Particle Swarm step).
- PGAPack Parallel Genetic Algorithms Package.
- Direct Dividing Rectangles.
- MCS Multilevel Coordinate Search.

Test problems

- 122 problems.
- Including 12 are of large dimension (100-300 variables).

Solvers used

- ASA Adaptative Simulated Annealing.
- PSwarm (our approach: Pattern Search with Particle Swarm step).
- PGAPack Parallel Genetic Algorithms Package.
- Direct Dividing Rectangles.
- MCS Multilevel Coordinate Search.

3

16 / 43

Test problems

- 122 problems.
- Including 12 are of large dimension (100-300 variables).

Solvers used

- ASA Adaptative Simulated Annealing.
- PSwarm (our approach: Pattern Search with Particle Swarm step).
- PGAPack Parallel Genetic Algorithms Package.
- Direct Dividing Rectangles.
- MCS Multilevel Coordinate Search.

16 / 43

Test problems

- 122 problems.
- Including 12 are of large dimension (100-300 variables).

Solvers used

- ASA Adaptative Simulated Annealing.
- PSwarm (our approach: Pattern Search with Particle Swarm step).
- PGAPack Parallel Genetic Algorithms Package.
- Direct Dividing Rectangles.
- MCS Multilevel Coordinate Search.

16 / 43

Test problems

- 122 problems.
- Including 12 are of large dimension (100-300 variables).

Solvers used

- ASA Adaptative Simulated Annealing.
- PSwarm (our approach: Pattern Search with Particle Swarm step).
- PGAPack Parallel Genetic Algorithms Package.
- Direct Dividing Rectangles.
- MCS Multilevel Coordinate Search.

イロト イポト イヨト イヨト 二日

Test problems

- 122 problems.
- Including 12 are of large dimension (100-300 variables).

Solvers used

- ASA Adaptative Simulated Annealing.
- PSwarm (our approach: Pattern Search with Particle Swarm step).
- PGAPack Parallel Genetic Algorithms Package.
- Direct Dividing Rectangles.
- MCS Multilevel Coordinate Search.

16 / 43

イロト 不得下 イヨト イヨト 二日

Using particle swarm in the search step

Numerical results (final value for f)

For further details see Vaz and Vicente, JOGO, 2007.

A.I.F. Vaz (UMinho)

Using different search steps

July 26-29, 2010

Using particle swarm in the search step

Numerical results (final value for f)

A.I.F. Vaz (UMinho)

Using different search steps

July 26-29, 2010

Numerical results (number of evaluations)

A.I.F. Vaz (UMinho)

Using different search steps

July 26-29, 2010

Test problems

- 120 problems with linear constraints were collected from 1564 optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
- 23 linear, 55 quadratic and 32 general nonlinear.
- 10 highly non-convex objective functions with random generated linear constraints (Pinter).

Solvers used

- PSwarm (our approach: Pattern Search with Particle Swarm step).
- ASA Adaptative Simulated Annealing.
- Direct Dividing Rectangles.
- NOMAD A blackbox optimization software (MATLAB version

Test problems

- 120 problems with linear constraints were collected from 1564 optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
- 23 linear, 55 quadratic and 32 general nonlinear.
- 10 highly non-convex objective functions with random generated linear constraints (Pinter).

Solvers used

- PSwarm (our approach: Pattern Search with Particle Swarm step).
- ASA Adaptative Simulated Annealing.
- Direct Dividing Rectangles.
- NOMAD --- A blackbox optimization software (MATLAB version

Test problems

- 120 problems with linear constraints were collected from 1564 optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
- 23 linear, 55 quadratic and 32 general nonlinear.
- 10 highly non-convex objective functions with random generated linear constraints (Pinter).

Solvers used

- RSwarm (our approach: Pattern Search with Particle Swarm step)
- ASA Adaptative Simulated Annealing.
- Direct Dividing Rectangles

NOMAD --- A blackbox optimization software (MATLAB version)

Test problems

- 120 problems with linear constraints were collected from 1564 optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
- 23 linear, 55 quadratic and 32 general nonlinear.
- 10 highly non-convex objective functions with random generated linear constraints (Pinter).

Solvers used

- PSwarm (our approach: Pattern Search with Particle Swarm step)
 ASA Adaptative Simulated Annealing.
- Direct Dividing Rectangless

Test problems

- 120 problems with linear constraints were collected from 1564 optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
- 23 linear, 55 quadratic and 32 general nonlinear.
- 10 highly non-convex objective functions with random generated linear constraints (Pinter).

Solvers used

- PSwarm (our approach: Pattern Search with Particle Swarm step).
- ASA Adaptative Simulated Annealing.
- Direct Dividing Rectangles.
- NOMAD A blackbox optimization software (MATLAB version).

э

Test problems

- 120 problems with linear constraints were collected from 1564 optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
- 23 linear, 55 quadratic and 32 general nonlinear.
- 10 highly non-convex objective functions with random generated linear constraints (Pinter).

Solvers used

- PSwarm (our approach: Pattern Search with Particle Swarm step).
- ASA Adaptative Simulated Annealing.
- Direct Dividing Rectangles.
- NOMAD A blackbox optimization software (MATLAB version).

3

Test problems

- 120 problems with linear constraints were collected from 1564 optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
- 23 linear, 55 quadratic and 32 general nonlinear.
- 10 highly non-convex objective functions with random generated linear constraints (Pinter).

Solvers used

- PSwarm (our approach: Pattern Search with Particle Swarm step).
- ASA Adaptative Simulated Annealing.
- Direct Dividing Rectangles.
- NOMAD A blackbox optimization software (MATLAB version).

3

Test problems

- 120 problems with linear constraints were collected from 1564 optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
- 23 linear, 55 quadratic and 32 general nonlinear.
- 10 highly non-convex objective functions with random generated linear constraints (Pinter).

Solvers used

- PSwarm (our approach: Pattern Search with Particle Swarm step).
- ASA Adaptative Simulated Annealing.
- Direct Dividing Rectangles.
- NOMAD A blackbox optimization software (MATLAB version).

3

Test problems

- 120 problems with linear constraints were collected from 1564 optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
- 23 linear, 55 quadratic and 32 general nonlinear.
- 10 highly non-convex objective functions with random generated linear constraints (Pinter).

Solvers used

- PSwarm (our approach: Pattern Search with Particle Swarm step).
- ASA Adaptative Simulated Annealing.
- Direct Dividing Rectangles.
- NOMAD A blackbox optimization software (MATLAB version).

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Linear objective functions

July 26-29, 2010

Quadratic objective functions

July 26-29, 2010

General nonlinear objective functions

July 26-29, 2010

B> B

22 / 43

A (10) A (10)

All objective functions

July 26-29, 2010

э

23 / 43

A.

Highly non-convex objective functions

For further details see Vaz and Vicente, OMS, 2009.

A.I.F. Vaz (UMinho)

✓ □ → < ≥ → < ≥ →</p>
July 26-29, 2010

э

Highly non-convex objective functions

For further details see Vaz and Vicente, OMS, 2009.

A.I.F. Vaz (UMinho)

July 26-29, 2010

э

24 / 43

< A

Outline

Using particle swarm in the search step

3 Using radial basis functions in the search step

4 Conclusions

3

Main idea

- To take advantage of direct-search methods of directional type where the iterations can be divided into two main steps (a search step and a poll step).
- Consists of forming and minimizing an Radial Basis Function (RBF) model in the search step.
- The RBF model can be used to order the poll set of directions.

Main idea

- To take advantage of direct-search methods of directional type where the iterations can be divided into two main steps (a search step and a poll step).
- Consists of forming and minimizing an Radial Basis Function (RBF) model in the search step.
- The RBF model can be used to order the poll set of directions.

A.I.F. Vaz (UMinho)

→ < ≧ → < ≧ → July 26-29, 2010

Main idea

- To take advantage of direct-search methods of directional type where the iterations can be divided into two main steps (a search step and a poll step).
- Consists of forming and minimizing an Radial Basis Function (RBF) model in the search step.

• The RBF model can be used to order the poll set of directions.

A.I.F. Vaz (UMinho)

Using different search steps

July 26-29, 2010

26 / 43

・ 伺 ト ・ ヨ ト ・ ヨ ト

Main idea

- To take advantage of direct-search methods of directional type where the iterations can be divided into two main steps (a search step and a poll step).
- Consists of forming and minimizing an Radial Basis Function (RBF) model in the search step.
- The RBF model can be used to order the poll set of directions.

In order to interpolate a function f whose values on a set $Y = \{y^1, \ldots, y^{n_p}\} \subset \mathbb{R}^n$ are known, one can use a RBF model of the form

$$m(x) = \sum_{i=1}^{n_p} \lambda_i \phi(||x - y^i||),$$

where $\phi(\|\cdot\|)$, with $\phi: \mathbb{R}_+ \to \mathbb{R}$, is a radial basis function and $\lambda_1, \ldots, \lambda_{n_n} \in \mathbb{R}$ are parameters to be determined.

In order to interpolate a function f whose values on a set $Y = \{y^1, \ldots, y^{n_p}\} \subset \mathbb{R}^n$ are known, one can use a RBF model of the form

$$m(x) = \sum_{i=1}^{n_p} \lambda_i \phi(||x - y^i||),$$

where $\phi(\|\cdot\|)$, with $\phi: \mathbb{R}_+ \to \mathbb{R}$, is a radial basis function and $\lambda_1, \ldots, \lambda_{n_n} \in \mathbb{R}$ are parameters to be determined.

Property

For m(x) to be C^2 , the function $\phi(x)$ must be both C^2 and $\phi'(0) = 0$.

A.I.F. Vaz (UMinho)

In many applications, it is desirable that the linear space spanned by the basis functions includes constant or linear functions.

One can augment RBF model by allowing a low-order *polynomial tail*. The new model is now of the form

$$m(x) = \sum_{i=1}^{n_p} \lambda_i \phi(\|x - y^i\|) + \sum_{j=0}^q \gamma_j p_j(x),$$

where $p_j(x)$, j = 0, ..., q, are some basis functions for the polynomial and $\gamma_0, ..., \gamma_q \in \mathbb{R}$.

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

The coefficients λ 's are required to satisfy

$$\sum_{i=1}^{n_p} \lambda_i p_j(y^i) = 0, \quad j = 0, \dots, q.$$

These, in conjunction with the interpolation conditions $m(y^i) = f(y^i)$, $i = 1, ..., n_p$, give the linear system

$$\left[\begin{array}{cc} \Phi & P \\ P^{\top} & 0 \end{array}\right] \left[\begin{array}{c} \lambda \\ \gamma \end{array}\right] = \left[\begin{array}{c} f(Y) \\ 0 \end{array}\right],$$

where $\Phi_{ij} = \phi(||y^i - y^j||)$ for $i, j \in \{1, \ldots, n_p\}$, $P_{ij} = p_j(y^i)$ for $i \in \{1, \ldots, n_p\}$, $j \in \{0, \ldots, q\}$, and f(Y) is the vector formed by the values $f(y^1), \ldots, f(y^{n_p})$.

July 26-29, 2010

The polynomial tails most frequently used in the context of RBF are linear, and we will write $t(x) = c + g^\top x$ and

$$m(x) = \sum_{i=1}^{n_p} \lambda_i \phi(\|x - y^i\|) + t(x).$$

This model has $n_p + n + 1$ parameters, n_p for the radial basis terms and n + 1 for the linear polynomial terms.

A.I.F. Vaz (UMinho)

July 26-29, 2010 30 / 43

Common/Used approach

Common approaches for derivative-free optimization use cubic RBFs and linear polynomial tails

$$m(x) = \sum_{i=1}^{n_p} \lambda_i ||x - y^i||^3 + t(x).$$

A.I.F. Vaz (UMinho)

July 26-29, 2010

Constraints handling

Bound constraints

They can simply be considered in the minimization of the RBF model.

Linear constraints

- They are temporarily removed from the RBF model minimization and then we project the minimizer onto Ω.
- For a feasible initial guess and the set of poll directions we use the same strategies already shown.
Constraints handling

Bound constraints

They can simply be considered in the minimization of the RBF model.

Linear constraints

- They are temporarily removed from the RBF model minimization and then we project the minimizer onto Ω.
- For a feasible initial guess and the set of poll directions we use the same strategies already shown.

・ 同 ト ・ ヨ ト ・ ヨ ト

Constraints handling

Bound constraints

They can simply be considered in the minimization of the RBF model.

Linear constraints

- They are temporarily removed from the RBF model minimization and then we project the minimizer onto Ω .
- For a feasible initial guess and the set of poll directions we use the same strategies already shown.

32 / 43

・ 同 ト ・ ヨ ト ・ ヨ ト

Constraints handling

Bound constraints

They can simply be considered in the minimization of the RBF model.

Linear constraints

- They are temporarily removed from the RBF model minimization and then we project the minimizer onto Ω .
- For a feasible initial guess and the set of poll directions we use the same strategies already shown.

Thus, the RBF model subproblem we are addressing is

min
$$m(x)$$
 s.t. $x \in \overline{\Omega}$,

where $\overline{\Omega}$ is the feasible region defined by upper and lower bounds on the variables, *i.e.*, $\overline{\Omega} = [\ell, u] \cap B_{\infty}(x_k; \sigma \alpha_k)$.

Solvers used for subproblems

3

33 / 43

イロト 不得下 イヨト イヨト

Thus, the RBF model subproblem we are addressing is

min
$$m(x)$$
 s.t. $x \in \overline{\Omega}$,

where $\overline{\Omega}$ is the feasible region defined by upper and lower bounds on the variables, *i.e.*, $\overline{\Omega} = [\ell, u] \cap B_{\infty}(x_k; \sigma \alpha_k)$.

Solvers used for subproblems

- Difference of Convex (D.C.) algorithm, in order to take advantage of the RBF structure.
- fmincon from the MATLAB optimization toolbox.

イロト 不得下 イヨト イヨト

3

Thus, the RBF model subproblem we are addressing is

min
$$m(x)$$
 s.t. $x \in \overline{\Omega}$,

where $\overline{\Omega}$ is the feasible region defined by upper and lower bounds on the variables, *i.e.*, $\overline{\Omega} = [\ell, u] \cap B_{\infty}(x_k; \sigma \alpha_k)$.

Solvers used for subproblems

• Difference of Convex (D.C.) algorithm, in order to take advantage of the RBF structure.

fmincon from the MATLAB optimization toolbox.

A.I.F. Vaz	(UMinho)
------------	----------

33 / 43

・ 伺 ト ・ ヨ ト ・ ヨ ト

Thus, the RBF model subproblem we are addressing is

min
$$m(x)$$
 s.t. $x \in \overline{\Omega}$,

where $\overline{\Omega}$ is the feasible region defined by upper and lower bounds on the variables, *i.e.*, $\overline{\Omega} = [\ell, u] \cap B_{\infty}(x_k; \sigma \alpha_k)$.

Solvers used for subproblems

- Difference of Convex (D.C.) algorithm, in order to take advantage of the RBF structure.
- fmincon from the MATLAB optimization toolbox.

Test problems

- The test set used in the numerical results includes 119 bound constrained problems and 109 linearly constrained problems coded in the AMPL format.
- In all cases, the stopping criteria consisted of reaching a maximum budget of 1000 function evaluations or driving the step size parameter α_k below 10^{-5} .

Test problems

• The test set used in the numerical results includes 119 bound constrained problems and 109 linearly constrained problems coded in the AMPL format.

• In all cases, the stopping criteria consisted of reaching a maximum budget of 1000 function evaluations or driving the step size parameter α_k below 10^{-5} .

Test problems

- The test set used in the numerical results includes 119 bound constrained problems and 109 linearly constrained problems coded in the AMPL format.
- In all cases, the stopping criteria consisted of reaching a maximum budget of 1000 function evaluations or driving the step size parameter α_k below 10^{-5} .

Solvers

- Pattern Simple coordinate search with an empty search step.
- PSwarm (our previous approach: Pattern Search with Particle Swarm step).
- RBF (our new approach: RBF model in the search step), using for subproblem minimization:
 - DCA D.C. algorithm.
 - fmincon.
 - DCA Sort D.C. algorithm (polling order according to RBF modelex), values).

(日) (周) (日) (日)

Solvers

- Pattern Simple coordinate search with an empty search step.
- PSwarm (our previous approach: Pattern Search with Particle Swarm step).
- RBF (our new approach: RBF model in the search step), using for subproblem minimization:
 - DCA D.C. algorithm.
 - o finincon.
 - DCA Sort D.C. algorithm (polling order according to RBF-model)

< □ > < □ > < □ > < □ > < □ > < □ >

э

Solvers

- Pattern Simple coordinate search with an empty search step.
- PSwarm (our previous approach: Pattern Search with Particle Swarm step).
- RBF (our new approach: RBF model in the search step), using for subproblem minimization:
 - DCA D.C. algorithm.
 - o finincon.
 - DCA Sork D.C. algorithm (polling order according to RBF model) solucit

イロト イポト イヨト イヨト

3

Solvers

- Pattern Simple coordinate search with an empty search step.
- PSwarm (our previous approach: Pattern Search with Particle Swarm step).
- RBF (our new approach: RBF model in the search step), using for subproblem minimization:
 - DCA D.C. algorithm.
 - fmincon.
 - DCA Sort D.C. algorithm (polling order according to RBF model values).

(日) (周) (日) (日) (日)

Solvers

- Pattern Simple coordinate search with an empty search step.
- PSwarm (our previous approach: Pattern Search with Particle Swarm step).
- RBF (our new approach: RBF model in the search step), using for subproblem minimization:
 - DCA D.C. algorithm.
 - fmincon.
 - DCA Sort D.C. algorithm (polling order according to RBF model values).

(日) (周) (日) (日) (日)

Solvers

- Pattern Simple coordinate search with an empty search step.
- PSwarm (our previous approach: Pattern Search with Particle Swarm step).
- RBF (our new approach: RBF model in the search step), using for subproblem minimization:
 - DCA D.C. algorithm.
 - fmincon.
 - DCA Sort D.C. algorithm (polling order according to RBF model values).

35 / 43

(日) (周) (日) (日) (日)

Solvers

- Pattern Simple coordinate search with an empty search step.
- PSwarm (our previous approach: Pattern Search with Particle Swarm step).
- RBF (our new approach: RBF model in the search step), using for subproblem minimization:
 - DCA D.C. algorithm.
 - fmincon.
 - DCA Sort D.C. algorithm (polling order according to RBF model values).

A.I.F. Vaz (UMinho)

Using different search steps

July 26-29, 2010

A.I.F. Vaz (UMinho)

Using different search steps

July 26-29, 2010

A.I.F. Vaz (UMinho)

Using different search steps

July 26-29, 2010 38

A.I.F. Vaz (UMinho)

Using different search steps

July 26-29, 2010

Outline

1 Direct search

- Dising particle swarm in the search step
- 3 Using radial basis functions in the search step

Conclusions

э

Conclusions

- Description of two strategies for enhancing the search step of direct-search algorithms.
- Using the search step of direct-search algorithms is advantageous.
- Numerical results confirm the improvement in solvers efficiency and robustness.

< □ > < □ > < □ > < □ > < □ > < □ >

Conclusions

- Description of two strategies for enhancing the search step of direct-search algorithms.
- Using the search step of direct-search algorithms is advantageous.
- Numerical results confirm the improvement in solvers efficiency and robustness.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Conclusions

- Description of two strategies for enhancing the search step of direct-search algorithms.
- Using the search step of direct-search algorithms is advantageous.
- Numerical results confirm the improvement in solvers efficiency and robustness.

3

References

Le Thi Hoai An, A.I.F. Vaz, and L.N. Vicente.

Optimizing radial basis functions by d.c. programming and its use in direct search for global derivative-free optimization. Technical Report 09-37, Univ. Coimbra, 2009.

A.I.F. Vaz and L. N. Vicente.

PSwarm: A hybrid solver for linearly constrained global derivative-free optimization.

Optimization Methods and Software, 24:669-685, 2009.

A.I.F. Vaz and L.N. Vicente.

A particle swarm pattern search method for bound constrained global optimization.

Journal of Global Optimization, 39:197–219, 2007.

Yin Zhang and Liyan Gao.

On numerical solution of the maximum volume ellipsoid problem. *SIAM Journal on Optimization*, 14:53–76, 2003.

A.I.F. Vaz (UMinho)

Using different search steps

July 26-29, 2010

Optimization 2011 (July 24–27, Portugal)

plenary speakers

Gilbert Laporte | HEC Montréal New trends in vehicle routing

Jean Bernard Lasserre | LAAS-CNRS, Toulouse Moments and semidefinite relaxations for parametric optimization

José Mario Martínez | State University of Campinas Unifying inexact restoration, SQP, and augmented Lagrangian methods

Mauricio G.C. Resende | AT&T Labs - Research Using metaheuristics to solve real optimization problems in telecommunications

Nick Sahinidis | Carnegie Mellon University Recent advances in nonconvex optimization

Stephen J. Wright | University of Wisconsin Algorithms and applications in sparse optimization

(日) (周) (日) (日)

A.I.F. Vaz (UMinho)

Using different search steps

July 26-29, 2010