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Notation and motivation for global optimization The semi-infinite programming problem

General formulation - Nonlinear semi-infinite programming

Problem

min
x∈Rn

f(x)

s.t. g(x, t) ≤ 0
∀t ∈ T

(NLSIP)

f(x) is the objective function

g(x, t) is the infinite constraint
function

T ⊂ Rp is, usually, a cartesian
product of intervals
([α1, β1]× [α2, β2]× ...× [αp, βp])

Note
A more general problem could be
defined, but the extension is
straightforward.
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Notation and motivation for global optimization The semi-infinite programming problem

An very simple academic example (n = 1 and p = 1)

Example

min
x∈R

x2, s.t.
x

t
sin(t)− x

10
≤ 0, ∀t ∈ [2π, 10π]

5 10 15 20 25 30 35
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

t

g(
3,

t)

g(3, t) = 3
t sin(t)− 3

10

Feasibility
Is x̄ = 3 feasible?
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Notation and motivation for global optimization The semi-infinite programming problem

Definition of stationary point

Let x∗ ∈ Rn be a point such that

g(x∗, t) ≤ 0, ∀t ∈ T ,

and there exists t1, t2, . . . , tm
∗

(∈ T ) and non negative numbers
λ0
∗, λ

1
∗, λ

2
∗, ..., λ

m∗
∗ such that

λ0
∗∇xf(x∗) +

m∗∑
i=1

λi
∗∇xg(x∗, ti) = 0.

with
g(x∗, ti) = 0, i = 1, ...,m∗.

Then x∗ is a stationary point for the (NLSIP).
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Notation and motivation for global optimization The multi-local optimization problem

Where global (multi-local) optimization plays a role?

The ti, i = 1, . . . ,m∗, points are global solutions of the problem

Multi-local problem (also called lower level problem)

max
t∈T

g(x∗, t)

The simple check for feasibility requests the computation of the global
solutions for the lower level problem (not complectly true).
In order to obtain global convergence for some methods the
computation of all the global and local solutions for the lower level
problem is necessary.
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A motivating example
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A motivating example Motivation for optimal control

Motivation

A great number of valuable products are produced using fermentation
processes and thus optimizing such processes is of great economic
importance.
Fermentation modeling process involves, in general, highly nonlinear
and complex differential equations.
Often optimizing these processes results in control optimization
problems for which an analytical solution is not possible.
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A motivating example Optimal control

The control problem

The optimal control problem is described by a set of differential
equations χ̇ = h(χ, u, t), χ(t0) = χ0, t0 ≤ t ≤ tf , where χ represent
the state variables and u the control variables.
The performance index J can be generally stated as

J(tf ) = ϕ(χ(tf ), tf ) +
∫ tf

t0
φ(χ, u, t)dt,

where ϕ is the performance index of the state variables at final time tf

and φ is the integrated performance index during the operation.
Additional constraints that often reflet some physical limitation of the
system can be imposed.
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A motivating example Optimal control

The control problem

The general maximization problem (P ) can be posed as

problem (P )

max J(tf ) (1)
s.t. χ̇ = h(χ, u, t) (2)

χ ≤ χ(t) ≤ χ, (3)

u ≤ u(t) ≤ u, (4)

∀t ∈ [t0, tf ] (5)

Where the state constraints (3) and control constraints (4) are to be
understood as componentwise inequalities.

How we addressed problem (P)?

Ismael Vaz (UMinho - PT) Multi-local optimization 16-18 November 2006 11 / 48



A motivating example Optimal control

The control problem

The general maximization problem (P ) can be posed as

problem (P )

max J(tf ) (1)
s.t. χ̇ = h(χ, u, t) (2)

χ ≤ χ(t) ≤ χ, (3)

u ≤ u(t) ≤ u, (4)

∀t ∈ [t0, tf ] (5)

Where the state constraints (3) and control constraints (4) are to be
understood as componentwise inequalities.

How we addressed problem (P)?

Ismael Vaz (UMinho - PT) Multi-local optimization 16-18 November 2006 11 / 48



A motivating example Used approaches

Approaches - Fed trajectory u(t) approximated by a Linear spline w(t).

Penalty function for state constraints
The multi-local (getting all local optima) problem is easy to solve

Objective function

Ĵ(tf ) =


J(tf ) if χ ≤ χ(t) ≤ χ,

∀t ∈ [t0, tf ]
−∞ otherwise

State constraints

u ≤ w(ti) ≤ u, i = 1, . . . , n

Where ti are the spline knots.

The maximization NLP problem is

max
w(ti)

Ĵ(tf ), s.t. u ≤ w(ti) ≤ u, i = 1, . . . , n
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A motivating example Used approaches

Approaches - Fed trajectory u(t) approximated by a Cubic spline s(t).

Penalty function for state constraints
The multi-local (getting all local optima) problem is hard to solve
No of-the-shelf software to address this problem
A new penalty function defined for control constraints

Objective function

Ĵ(tf ) =


J(tf ) if χ ≤ χ(t) ≤ χ,

∀t ∈ [t0, tf ]
−∞ otherwise

New objective function

J̄(tf ) =

 Ĵ(tf ) if u ≤ w(t) ≤ u,
∀t ∈ [t0, tf ]

−∞ otherwise
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Ĵ(tf ) =


J(tf ) if χ ≤ χ(t) ≤ χ,

∀t ∈ [t0, tf ]
−∞ otherwise

New objective function

J̄(tf ) =
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A motivating example Used approaches

Implementation details

The AMPL modeling language:
was used to model five optimal control problems
dynamic external library facility was used to solve the ordinary
differentiable equations

AMPL - A Modeling Programming Language
www.ampl.com

The ordinary differentiable equations were solved using the CVODE
software package.

http://www.llnl.gov/casc/sundials/

A stochastic algorithm based on particle swarm was used to solve the
non-differentiable optimization problem. We address this algorithm
later on.
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A motivating example Some numerical results

The problems set

We obtained numerical results for five case studies.
Problem

penicillin refers to a problem of fed-batch fermentation process
where the optimal feed trajectory is to be computed while the penicillin
production is to be maximized.
ethanol refers to a similar optimal control problem where the ethanol
production is to be maximized.
chemotherapy is the only optimal control problem that does not refers
to a fed-batch fermentation processe. It is a problem of drug
administration in chemotherapy. The optimal trajectory to be
computed is the quantity of drug that must be present in order to
achieve a specified tumor reduction.
hprotein optimal control problem is to compute a unique trajectory
(substrate to be fed) problem rprotein includes also a trajectory for
an inducer. Both problems refer to a maximization for protein
production.
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A motivating example Some numerical results

Characteristics and parameters

The time displacement (hi) are fixed while the optimal trajectory
values are to be approximated.
Particle swarm is a population based optimization algorithm and a
population size of 60 was used with a maximum of 1000 iterations.
Since a stochastic algorithm was used we performed 10 runs of the
solver and the best solution is reported.
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A motivating example Some numerical results

Numerical results

Cubic Linear Literature
Problema NT n tf J(tf ) J(tf ) J(tf )
penicillin 1 5 132.00 87.70 88.29 87.99
ethanol 1 5 61.20 20550.70 20379.50 20839.00
chemotherapy 1 4 84.00 15.75 16.83 14.48
hprotein 1 5 15.00 38.86 32.73 32.40
rprotein 2 5 10.00 0.13 0.12 0.16

J(tf ) = Ĵ(tf ) = J̄(tf ), for all feasible points - splines

Similar results between approaches. A new solution for the ethanol case.
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A motivating example Some numerical results

Plots - Linear spline approximation - ethanol case
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A motivating example Some numerical results

Plots - Cubic spline approximation - Similar result
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A motivating example Some numerical results

Plots - Cubic spline approximation - Best result
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A motivating example Some numerical results

Some intermediate conclusions and future work

Conclusions

Viability of the cubic spline approach on fed-batch optimal control.
Shown numerical results with particle swarm
Similar numerical results with the two approaches

Future work

Numerical experiments with the E. coli bacteria
Laboratory confirmation of the obtained results (a lab bioreactor will be
available)
Laboratory confirmation of the two approaches and we expect the cubic
approach to obtain a lower gap between simulated and real
performance.
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The particle swarm algorithm

Outline

1 Notation and motivation for global optimization

2 A motivating example

3 The particle swarm algorithm

4 Modification of PSOA for multi-local optimization

5 Numerical results in semi-infinite programming

6 Conclusions and future work
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The particle swarm algorithm The paradigm

We intended to solve the following global optimization problem with a
particle swarm algorithm.

Global optimization problem

max
t∈T

ḡ(t) ≡ g(x̄, t)

with T ∈ Rp.
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The particle swarm algorithm The paradigm

The Particle Swarm Paradigm (PSP)

The PSP is a population (swarm) based algorithm that mimics the social
behavior of a set of individuals (particles).

An individual behavior is a combination of its past experience (cognition
influence) and the society experience (social influence).

In the optimization context a particle ℘, at time instant k, is represented
by its current position (t℘(k)), its best ever position (y℘(k)) and its
traveling velocity (v℘(k)).
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The particle swarm algorithm The paradigm

The new travel position and velocity

The new particle position is updated by

Update position

t℘(k + 1) = t℘(k) + v℘(k + 1),

where v℘(k + 1) is the new velocity given by

Update velocity

v℘
j (k+1) = ι(k)v℘

j (k)+µω1j(k)
(
y℘

j (k)− t℘j (k)
)
+νω2j(k)

(
ŷj(k)− t℘j (k)

)
,

for j = 1, . . . , p.

ι(k) is a weighting factor (inertial)
µ is the cognition parameter and ν is the social parameter
ω1j(k) and ω2j(k) are random numbers drawn from the uniform
(0, 1) distribution.
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ŷj(k)− t℘j (k)

)
,

for j = 1, . . . , p.

ι(k) is a weighting factor (inertial)
µ is the cognition parameter and ν is the social parameter
ω1j(k) and ω2j(k) are random numbers drawn from the uniform
(0, 1) distribution.

Ismael Vaz (UMinho - PT) Multi-local optimization 16-18 November 2006 25 / 48



The particle swarm algorithm The paradigm

The new travel position and velocity

The new particle position is updated by

Update position

t℘(k + 1) = t℘(k) + v℘(k + 1),

where v℘(k + 1) is the new velocity given by

Update velocity

v℘
j (k+1) = ι(k)v℘

j (k)+µω1j(k)
(
y℘

j (k)− t℘j (k)
)
+νω2j(k)

(
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The particle swarm algorithm The paradigm

The best ever particle

ŷ(k) is a particle position with global best function value so far, i.e.,

Best position

ŷ(k) ∈ arg min
a∈A

ḡ(a)

A =
{
y1(k), . . . , ys(k)

}
.

where s is the number of particles in the swarm.

Note
In an algorithmic point of view we just have to keep track of the particle
with the best ever function value.
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The particle swarm algorithm Some features

Features

Population based algorithm.

Good
Easy to implement.
Easy to parallelize.
Easy to handle discrete variables.
Only uses objective function evaluations.

Not so good
Slow rate of convergence near an optimum.
Quite large number of function evaluations.
In the presence of several global optima the algorithm may not
converge.
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The particle swarm algorithm Some features

Properties

With a proper selection of the algorithm parameters finite termination
of the algorithm can be established, in a probabilistic sense.
Convergence for a global optimum is not guaranteed by this simple
version of the particle swarm algorithm, but some adaption can be
introduce to guarantee it.
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Modification of PSOA for multi-local optimization

Outline

1 Notation and motivation for global optimization

2 A motivating example

3 The particle swarm algorithm

4 Modification of PSOA for multi-local optimization

5 Numerical results in semi-infinite programming

6 Conclusions and future work
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Modification of PSOA for multi-local optimization The multi-local optimization problem revisited

Multi-local revisited

Given x̄ the multi-local optimization problem is defined as

Multi-local optimization problem

max
t∈T

g(x̄, t) ≡ ḡ(t)

with T ∈ Rn.

The multi-local concept
All the global and local optima are to be computed.

Some characteristics
These problems are mostly differentiable and the objective function
computation is costless.
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Modification of PSOA for multi-local optimization The steepest ascent direction

PSP with the steepest ascent direction

The new particle position update equation is kept while the new velocity
equation is given by

Steepest ascent velocity

v℘
j (k+1) = ι(k)v℘

j (k)+µω1j(k)
(
y℘

j (k)− t℘j (k)
)
+νω2j(t)

(
∇j ḡ(y℘

j (k))
)

,

for j = 1, . . . , p, where ∇ḡ(t) is the gradient of the objective function.

Each particle uses the steepest ascent direction computed at each particle
best position (y℘(k)).

The inclusion of the steepest ascent direction in the velocity equation aims
to drive each particle to a neighbor local maximum and since we have a
population of particles, each one will be driven to a local maximum.
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Modification of PSOA for multi-local optimization The steepest ascent direction

PSP with an ascent direction

Other approach is to use

Ascent velocity formula

w℘ =
1∑m

j=1 |ḡ(z℘
j )− ḡ(y℘)|

m∑
j=1

(ḡ(z℘
j )− ḡ(y℘))

(z℘
j − y℘)

‖z℘
j − y℘‖

as an ascent direction at y℘, in the velocity equation, to overcome the need
to compute the gradient.

Where
y℘ is the best position of particle ℘

{z℘
j }m

j=1 is a set of m (random) points close to yp,

Under certain conditions w℘ simulates the steepest ascent direction.
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Modification of PSOA for multi-local optimization Implementation

Stopping criterion

We propose the stopping criterion

Minimum velocity attained

max
℘

[v℘(k)]opt ≤ ε℘

where

Constrained velocity

[v℘(k)]opt =

 p∑
j=1


0 if t℘j (k) = βj and v℘

j (k) ≥ 0
0 if t℘j (k) = αj and v℘

j (k) ≤ 0(
v℘
j (k)

)2
otherwise


1/2

The stopping criterion is based on the optimality conditions for the
multi-local optimization problem.
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Modification of PSOA for multi-local optimization Implementation

Environment

We have coined the solver as MLOCPSOA (Multi-Local Optimization
Particle Swarm Algorithm)
Implemented in the C programming language
Interfaced with AMPL (www.ampl.com)
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Modification of PSOA for multi-local optimization Numerical results

Test problems set

Problems p Nt∗ ḡ∗

1 b2 2 1 0.000E+00
2 bohachevsky 2 1 0.000E+00
3 branin 2 3 3.979E-01
4 dejoung 3 1 0.000E+00
5 easom 2 1 -1.000E+00
6 f1 30 1 -1.257E+04
7 goldprice 2 1 3.000E+00
8 griewank 6 1 0.000E+00
9 hartmann3 3 1 -3.863E+00

10 hartmann6 6 1 -3.322E+00
11 hump 2 2 0.000E+00
12 hump_camel 2 2 -1.032E+00
13 levy3 2 18 -1.765E+02
14 parsopoulos 2 12 0.000E+00
15 rosenbrock10 10 1 0.000E+00
16 rosenbrock2 2 1 0.000E+00
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Modification of PSOA for multi-local optimization Numerical results

Test problems

Problems p Nt∗ ḡ∗

17 rosenbrock5 5 1 0.000E+00
18 shekel10 4 1 -1.054E+01
19 shekel5 4 1 -1.015E+01
20 shekel7 4 1 -1.040E+01
21 shubert 2 18 -1.867E+02
22 storn1 2 2 -4.075E-01
23 storn2 2 2 -1.806E+01
24 storn3 2 2 -2.278E+02
25 storn4 2 2 -2.429E+03
26 storn5 2 2 -2.478E+04
27 storn6 2 2 -2.493E+05
28 zakharov10 10 1 0.000E+00
29 zakharov2 2 1 0.000E+00
30 zakharov20 20 1 0.000E+00
31 zakharov4 4 1 0.000E+00
32 zakharov5 5 1 0.000E+00
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Modification of PSOA for multi-local optimization Numerical results

Parameters

For each problem, the optimizer was run 5 times with different initial
particle positions and velocities (randomly chosen from the search
domain)
The algorithm terminates if the stopping criterion is met with
εp = 0.01 or the number of iterations exceeds Kmax = 100000
Coefficients µ and ν were both set to 1.2
The inertial parameter ι(t) was linearly scaled from 0.7 to 0.2 over a
maximum of Kmax iterations
The swarm size is given by min(6p, 100), where p is the problem
dimension.
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The inertial parameter ι(t) was linearly scaled from 0.7 to 0.2 over a
maximum of Kmax iterations
The swarm size is given by min(6p, 100), where p is the problem
dimension.
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Modification of PSOA for multi-local optimization Numerical results

Numerical results

Gradient version Approximate descent direction version
F.O. Nafe Nage g∗a gbest F.O. Nafe g∗a gbest

1 100 3444343 873 0,000E+00 0,000E+00 100 3602386 0,000E+00 0,000E+00
2 100 2782058 545 0,000E+00 0,000E+00 100 3600983 0,000E+00 0,000E+00
3 100 1740823 1397 3,979E-01 3,979E-01 100 3601171 3,979E-01 3,979E-01
4 100 1647820 4420 2,618E-23 0,000E+00 100 10003223 0,000E+00 0,000E+00
5 100 283500 70615 -1,000E+00 -1,000E+00 100 3601354 -1,000E+00 -1,000E+00
6 Not differentiable 100 10104250 -1,448E+04 -1,468E+04
7 20 3600000 59 2,431E+01 4,583E+00 100 3600967 3,000E+00 3,000E+00
8 20 10000000 7754 1,084E-02 0,000E+00 0 10004487 2,257E-02 1,503E-02
9 100 10000000 483 -3,850E+00 -3,861E+00 100 10002098 -3,862E+00 -3,863E+00

10 40 10000000 525 -2,937E+00 -3,185E+00 100 10002652 -3,202E+00 -3,242E+00
11 100 963259 1082 -1,032E+00 -1,032E+00 100 3600946 -1,032E+00 -1,032E+00
12 100 1171181 1329 4,651E-08 4,651E-08 100 3601098 2,362E-06 6,756E-07
13 0 3600000 439 -1,276E+02 -1,592E+02 49 3601052 -1,765E+02 -1,765E+02
14 85 2952979 2295 4,922E-23 3,749E-33 75 3600819 2,607E-07 9,685E-08
15 0 10000000 154 8,051E+04 3,387E+04 0 10009292 8,726E+00 7,386E+00
16 0 3600000 91 3,046E+00 1,190E+00 100 3601268 1,437E-06 5,698E-07
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Modification of PSOA for multi-local optimization Numerical results

Numerical results

Gradient version Approximate descent direction version
F.O. Nafe Nage g∗a gbest F.O. Nafe g∗a gbest

17 0 10000000 177 4,652E+03 2,393E+03 40 10005589 2,203E-01 1,327E-01
18 100 10000000 1850 -9,160E+00 -1,026E+01 100 10004066 -1,052E+01 -1,052E+01
19 100 10000000 2126 -7,801E+00 -8,760E+00 100 10003906 -1,012E+01 -1,014E+01
20 100 10000000 1909 -9,401E+00 -9,997E+00 100 10004069 -1,037E+01 -1,039E+01
21 0 3600000 335 -1,024E+02 -1,648E+02 60 3600999 -1,867E+02 -1,867E+02
22 100 1366222 973 -4,075E-01 -4,075E-01 100 3600804 -4,075E-01 -4,075E-01
23 100 3600000 570 -1,806E+01 -1,806E+01 100 3600902 -1,806E+01 -1,806E+01
24 100 3600000 194 -2,278E+02 -2,278E+02 100 3601003 -2,278E+02 -2,278E+02
25 100 3600000 167 -2,429E+03 -2,429E+03 100 3601160 -2,429E+03 -2,429E+03
26 90 3600000 81 -2,477E+04 -2,478E+04 100 3601278 -2,478E+04 -2,478E+04
27 10 3600000 58 1,607E+05 -2,436E+05 100 3601418 -2,493E+05 -2,493E+05
28 0 10000000 141 4,470E+02 3,102E+01 60 10009759 3,977E-02 2,506E-02
29 0 10000000 135 1,289E+05 7,935E+02 0 10016905 3,633E-01 2,404E-01
30 100 1433664 16314 8,325E-112 0,000E+00 100 3601264 4,987E-07 4,464E-08
31 100 10000000 313 1,997E-13 2,780E-21 100 10005221 2,231E-04 6,612E-05
32 40 10000000 160 8,338E+00 3,031E-04 100 10006065 2,005E-03 1,186E-03
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Numerical results in semi-infinite programming The test set

The test set

The test problems were obtained from SIP where x̄ was replaced by
x∗, where x∗ is the SIP solution included in the SIPAMPL database.
SIPAMPL stands for SIP with AMPL and is a software package that
provides, among other features, a database of SIP coded problems.
All SIP problems considered have only one infinite constraint.

SIP problem Test problem p Obs
watson2 sip_wat2 1 Unidimensional
vaz3 sip_vaz3 2 Air pollution abatement
priceS6 sip_S6 6 Higher dimension in SIPAMPL
priceU sip_U 6 Higher dimension in SIPAMPL
random sip_rand 6 Random generated with known solution
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Numerical results in semi-infinite programming Numerical results

Numerical results

A population of 40 particles and a maximum of 2000 iterations was
used, with the steepest ascent direction version.
sip_wat2 a global and a local maxima were found. 10 particles
converged to the local maxima t = 1 with ḡ(1) = −0.058594 and the
remaining 30 to the global one (t = 0) with ḡ(0) = −2.5156e− 08
In sip_vaz3 the objective function is flat (equal to zero) in a region.

t ḡ(t) npar

(−0.783012, 2.172526) 0.000000 1
(−0.112199,−0.686259) 0.000000 1
(−0.278460, 0.095245) 0.000000 1
(−0.446057, 1.157275) 0.000000 1
(0.443709, 3.811052) 0.000000 1

(3.684002,−0.629689) 0.500007 22
(1.099826, 0.112477) 0.500055 13
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In sip_vaz3 the objective function is flat (equal to zero) in a region.
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Numerical results in semi-infinite programming Numerical results

Numerical results

sip_S6 a reported global maximizer and two local with objective
function values of 0.027092, -3.69008 and -1.95425 respectively.

t ḡ(t)

...
(1.622134, 1.687810, 2.000000, 0.085439, 2.000000, 0.350174) 0.024811

...
(1.634326, 1.671065, 2.000000, 0.054348, 2.000000, 2.000000) −1.954538

...

sip_U reported two global maximizers and eleven local maximizers

t ḡ(t) npar

(-0.665555,-1.000000,1.00,1.00,1.00,1.00) -0.002587 1
(-0.689138,-0.933410,1.00,1.00,1.00,1.00) -0.003319 1
(-0.890160,-1.000000,1.00,1.00,1.00,1.00) -0.000225 1
(-0.894640,-1.000000,1.00,1.00,1.00,1.00) -0.000103 1
(-0.897369,-1.000000,1.00,1.00,1.000,1.00) -0.000648 1
(1.000000,1.000000,1.00,1.00,1.00,1.00) 0.239638e-07 35
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t ḡ(t)

...
(1.622134, 1.687810, 2.000000, 0.085439, 2.000000, 0.350174) 0.024811

...
(1.634326, 1.671065, 2.000000, 0.054348, 2.000000, 2.000000) −1.954538

...

sip_U reported two global maximizers and eleven local maximizers
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Numerical results in semi-infinite programming Numerical results

Numerical results

sip_rand are known to be any combination of
x1 = 0.204475, 0.613425, x2 = 0.286248, 0.858745, x3 = 0.358527,
x4 = 0.420428, x5 = 0.112190, 0.336571, 0.560951, 0.785332 and
x6 = 1. When xi = 1, i = 1, . . . , 5 we may be in the presence of a
local maximizer.

x f(x)

(1.000000,0.844527,1.000000,0.439280,1.000000,1.000000) 0.099529
(0.605034,0.875442,0.322422,0.464760,1.000000,0.882592) 0.103833
(1.000000,0.290493,0.358070,0.391673,1.000000,1.000000) 0.111176
(1.000000,0.282674,1.000000,0.423782,1.000000,1.000000) 0.100581
(1.000000,0.831978,0.303846,0.384511,1.000000,0.946638) 0.100823
(1.000000,0.832307,0.374898,0.431689,1.000000,1.000000) 0.109419
(1.000000,0.301931,1.000000,0.430023,1.000000,1.000000) 0.099764
(0.213111,0.299029,0.366111,1.000000,1.000000,0.997780) 0.035990
(1.000000,0.882755,0.336751,0.459651,1.000000,1.000000) 0.107248
(1.000000,0.861285,0.380012,0.383345,1.000000,0.977121) 0.108998
(1.000000,0.306139,0.325222,0.398052,1.000000,1.000000) 0.108086

...
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Conclusions and future work Conclusions

Conclusions and future work

We have presented a new multi-local optimization algorithm that
evaluates multiple optimal solutions for multi-modal optimization
problems
The MLOCPSO algorithm adapts the unimodal particle swarm
optimizer using ascent directions information to maintain diversity and
to drive the particles to neighbor local maxima
Ascent directions are obtained through the gradient vector or an
heuristic method to produce an approximate ascent direction.
Experimental results indicate that the proposed algorithm is able to
evaluate multiple optimal solutions with reasonable success rates.
The use of a properly scaled gradient vector and the optimizer
performance analysis on high-dimensional problems are issues under
investigation.
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Conclusions and future work

Numerical results with the E. coli bacteria and laboratory confirmation
of the used approaches.
Theoretical study of the velocity equation when an ascent direction is
used. Inclusion of other ascent directions.
A reduction method for semi-infinite programming using the
multi-local particle swarm (a warm start can be used).
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THE END

Ismael Vaz
email: aivaz@dps.uminho.pt
Web http://www.norg.uminho.pt/aivaz

With special thanks to Eugénio Ferreira (DEB) and Edite Fernandes (DPS).
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