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PSwarm for bound constraints Notation/definitions

Problem formulation

The problem we are addressing is:

Problem definition - bound constraints
min
z∈Rn

f(z)

s.t. ` ≤ z ≤ u,

where ` ≤ z ≤ u are understood componentwise.

Smoothness – Assumption
To apply particle swarm or coordinate search, smoothness of the objective
function f(z) is not required.
For the convergence analysis of coordinate search, and therefore of the
hybrid algorithm, some smoothness of the objective function f(z) is
imposed.
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PSwarm for bound constraints Particle swarm

Particle Swarm (new position and velocity)

The new particle position is updated by

Update particle

xp(t + 1) = xp(t) + vp(t + 1),

where vp(t + 1) is the new velocity given by

Update velocity

vp(t + 1) = ι(t)vp(t) + µω1(t) (yp(t)− xp(t)) + νω2(t) (ŷ(t)− xp(t)) ,

where ι(t), µ and ν are parameters and ω1(t) and ω2(t) are random vectors
drawn from the uniform (0, 1) distribution.
yp(t) is the best particle p position and ŷ(t) is the best population position.
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PSwarm for bound constraints Particle swarm

Some properties

Easy to implement.

Easy to deal with discrete variables.

Easy to parallelize.

For a correct choice of parameters the algorithm terminates
(limt→+∞ v(t) = 0).

Uses only objective function values.

Convergence for a global optimum under strong assumptions
(unpractical).

High number of function evaluations.
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PSwarm for bound constraints Coordinate search

Introduction to direct search methods

Direct search methods are an important class of optimization methods
that try to minimize a function by comparing objective function values
at a finite number of points.
Direct search methods do not use derivative information of the
objective function nor try to approximate it.

Coordinate search is a simple direct search method.
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PSwarm for bound constraints Coordinate search

Some definitions

Maximal positive basis
Formed by the coordinate vectors and their negative counterparts:

D⊕ = {e1, . . . , en,−e1, . . . ,−en}.

D⊕ spans Rn with nonnegative coefficients.

Coordinate search
The direct search method based on D⊕ is known as coordinate or compass
search.
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PSwarm for bound constraints Coordinate search

Some definitions

Given D⊕ and the current point y(t), two sets of points are defined: a grid
Mt and the poll set Pt.

Sets
The grid Mt is given by

Mt =
{

y(t) + α(t)D⊕z, z ∈ N|D⊕|0

}
,

where α(t) > 0 is the grid size parameter.
The poll set is given by

Pt = {y(t) + α(t)d, d ∈ D⊕} .
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PSwarm for bound constraints Coordinate search

Coordinate search

The search step conducts a finite search on the grid Mt.

If no success is obtained in the search step then a poll step follows.

The poll step evaluates the objective function at the elements of Pt,
searching for points which have a lower objective function value.

If success is attained, the value of α(t) may be increased, otherwise it
is reduced.
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PSwarm for bound constraints The hybrid algorithm

Motivation for PSwarm

Central idea
A particle swarm iteration is performed in the search step and if no progress
is attained a poll step is taken.

Key points
In the first iterations the algorithm takes advantage of the particle
swarm ability to find a global optimum (exploiting the search space),
while in the last iterations the algorithm takes advantage of the
pattern search robustness to find a stationary point.
The number of particles in the swarm search can be decreased along
the iterations (no need to have a large number of particles around a
local optimum).
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PSwarm for bound constraints Numerical results

An example - Treccani function

Iter=0   Poll=0   SuccPoll=0   Alpha=0.8   Nof=0   Of=Inf
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PSwarm for bound constraints Numerical results

An example - Treccani function
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PSwarm for bound constraints Numerical results

An example - Treccani function
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PSwarm for bound constraints Numerical results

An example - Treccani function
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PSwarm for bound constraints Numerical results

An example - Treccani function
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PSwarm for bound constraints Numerical results

An example - Treccani function
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PSwarm for bound constraints Numerical results

An example - Treccani function
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PSwarm for bound constraints Numerical results

An example - Treccani function
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PSwarm for bound constraints Numerical results

An example - Treccani function
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PSwarm for bound constraints Numerical results

An example - Treccani function
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PSwarm for bound constraints Numerical results

An example - Treccani function
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PSwarm for bound constraints Numerical results

An example - Treccani function
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PSwarm for bound constraints Numerical results

An example - Treccani function
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PSwarm for bound constraints Numerical results

An example - Treccani function
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PSwarm for bound constraints Numerical results

An example - Treccani function

Iter=100   Poll=32   SuccPoll=12   Alpha=6.1035e−006   Nof=1798   Of=−2.2267

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

I. Vaz and L.N. Vicente (PT) Linear Constrained PSwarm May 10-13, 2008 26 / 49



PSwarm for bound constraints Numerical results

An example - Treccani function
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PSwarm for bound constraints Numerical results

An example - Treccani function
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PSwarm for bound constraints Numerical results

Numerical results (final value for f)

122 problems where 12 are of large dimension (100-300 variables).
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For further details see Vaz and Vicente, JOGO, 2007
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PSwarm for bound constraints Numerical results

Numerical results (number of evaluations)
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PSwarm for bound constraints Numerical results

Parameter estimation in Astrophysics
The goal is to determine a set of six stellar parameters from observable
data. The objective function requires simulation (CESAM code). PSwarm
was very successful on a set of 135 stars (193× 2000× 25 = 18.40 years
computational time in parallel).
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PSwarm for bound and linear constraints Additional notation/definitions

Problem formulation

The problem we are now addressing is:

Problem definition - bound and linear constraints
min
z∈Rn

f(z)

s.t. Az ≤ b,

` ≤ z ≤ u,

where A is a m× n matrix, b is a m column vector and ` ≤ z ≤ u are
understood componentwise.
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PSwarm for bound and linear constraints Feasible initial population

Feasible initial population

Obtaining an initial feasible population and controlling feasibility in the
linear constrained case is critical.
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PSwarm for bound and linear constraints Feasible initial population

Feasible initial population

Getting an initial feasible population allows a more efficient search for the
global optimum.
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PSwarm for bound and linear constraints Keeping feasibility

Search step (Particle Swarm)

Feasibility is kept during the optimization process for all particles. This is
achieved by introducing a maximum allowed step in the “search” direction.

Maximum allowed step

xp(t + 1) = xp(t) + αmaxvp(t + 1),

where αmax is the maximum step
allowed to keep xp(t + 1) inside the
feasible region.
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PSwarm for bound and linear constraints Keeping feasibility

Poll step

For the coordinate search method applied to bound constrained problems it
is sufficient to initialize the algorithm with a feasible initial guess
(y(0) ∈ Ω) and to use f̂ as the objective function.

Penalty/Barrier function

f̂(z) =
{

f(z) if z ∈ Ω,
+∞ otherwise.

Linear constraints
For the case of linear constraints this is no longer true.
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PSwarm for bound and linear constraints Keeping feasibility

Positive generators for the tangent cone

The set of polling directions needs to conform with the geometry of the
feasible set.
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PSwarm for bound and linear constraints Positive generators for the tangent cone

Positive generators for the tangent cone

No ε-active constraints
The positive spanning set is the maximal positive basis D⊕.

For ε-active constraint(s)

The polling directions are the positive generators for the tangent cone of
the ε-active constraints (obtained by QR factorization)

Degeneracy
The ε parameter is dynamically adapted when degeneracy in the ε-active
constraints is detected. If no success is attained the maximal positive basis
is used.
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PSwarm for bound and linear constraints Numerical results

Test problems

120 problems with linear constraints were collected from 1564
optimization problems (AMPL, CUTE, GAMS, NETLIB, etc.).
23 linear, 55 quadratic and 32 general nonlinear.
10 highly non-convex objective functions with random generated linear
constraints (Pinter).

The test problems are coded in AMPL (A Modeling Language for
Mathematical Programming).

Test problems available at http://www.norg.uminho.pt/aivaz
(under software).
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PSwarm for bound and linear constraints Numerical results

Linear objective functions
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PSwarm for bound and linear constraints Numerical results

Quadratic objective functions
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PSwarm for bound and linear constraints Numerical results

General nonlinear objective functions

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Objective function values (average of 10 runs with maxf=2000, nonlinear objective)

ν

ρ

PSwarm
ASA
Direct
Nomad

2 4 6 8
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ν

ρ

I. Vaz and L.N. Vicente (PT) Linear Constrained PSwarm May 10-13, 2008 43 / 49



PSwarm for bound and linear constraints Numerical results

All objective functions
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PSwarm for bound and linear constraints Numerical results

Highly non-convex objective functions
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Conclusions

Conclusions

Conclusions
Development of a hybrid algorithm for derivative-free global
optimization with bound and/or linear constraints.

PSwarm shown to be a robust and competitive solver.

Availability
Only version 0.1 is publicly available at:

www.norg.uminho.pt/aivaz/pswarm

the NEOS server

Version 1.1 available soon.
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