# Air pollution control with semi-infinite programming

A. Ismael F. Vaz

Eugénio C. Ferreira

Production and Systems Department

Biological Engineering Center

**Engineering School** 

Minho University - Braga - Portugal

aivaz@dps.uminho.pt

ecferreira@deb.uminho.pt

XXVIII Congreso Nacional de la SEIO

25-29 October 2004

#### **Contents**

- Semi-Infinite Programming (SIP)
- Dispersion model
- Formulations
- Modeling and solving environment
- Examples
- Numerical results

# Semi-infinite programming

$$\min_{u \in R^n} f(u)$$
s.t.  $g_i(u, v) \le 0, i = 1, ..., m$ 

$$u_{lb} \le u \le u_{ub}$$

$$\forall v \in \mathcal{R} \subset R^p,$$

where f(u) is the objective function,  $g_i(u,v)$ ,  $i=1,\ldots,m$  are the infinite constraint functions and  $u_{lb}$ ,  $u_{ub}$  are the lower and upper bounds on u.

# Coordinate system



# Dispersion model

Assuming that the plume has a Gaussian distribution, the concentration, of gas or aerosol (particles with diameter less than 20 microns) at position x, y and z of a continuous source with effective stack height  $\mathcal{H}$ , is given by

$$C(x, y, z, \mathcal{H}) = \frac{Q}{2\pi\sigma_y\sigma_z\mathcal{U}}e^{-\frac{1}{2}\left(\frac{\mathcal{Y}}{\sigma_y}\right)^2} \left(e^{-\frac{1}{2}\left(\frac{z-\mathcal{H}}{\sigma_z}\right)^2} + e^{-\frac{1}{2}\left(\frac{z+\mathcal{H}}{\sigma_z}\right)^2}\right)$$

where  $\mathcal{Q}\left(gs^{-1}\right)$  is the pollution uniform emission rate,  $\mathcal{U}\left(ms^{-1}\right)$  is the mean wind speed affecting the plume,  $\sigma_{y}\left(m\right)$  and  $\sigma_{z}\left(m\right)$  are the standard deviations in the horizontal and vertical planes, respectively.

## Change of coordinates

The source change of coordinates to position (a, b), in the wind direction.

 ${\cal Y}$  is given by

$$\mathcal{Y} = (x - a)\sin(\theta) + (y - b)\cos(\theta),$$

where  $\theta$  (rad) is the wind direction  $(0 \le \theta \le 2\pi)$ .

 $\sigma_y$  and  $\sigma_z$  depend on  ${\mathcal X}$  given by

$$\mathcal{X} = (x - a)\cos(\theta) - (y - b)\sin(\theta).$$

#### Plume rise

The effective emission height is the sum of the stack height,  $h\left(m\right)$ , with the plume rise,  $\Delta\mathcal{H}\left(m\right)$ . The considered elevation is given by the Holland equation

$$\Delta \mathcal{H} = rac{V_o d}{\mathcal{U}} \left( 1.5 + 2.68 rac{T_o - T_e}{T_o} d 
ight)$$
 ,

where  $d\left(m\right)$  is the internal stack diameter,  $V_o\left(ms^{-1}\right)$  is the gas out velocity,  $T_o\left(K\right)$  is the gas temperature and  $T_e\left(K\right)$  is the environment temperature.

• Assuming n pollution sources distributed in a region;

- Assuming n pollution sources distributed in a region;
- ullet is the source i contribution for the total concentration;

- ullet Assuming n pollution sources distributed in a region;
- ullet  $\mathcal{C}_i$  is the source i contribution for the total concentration;
- Gas chemical inert.

- ullet Assuming n pollution sources distributed in a region;
- $C_i$  is the source i contribution for the total concentration;
- Gas chemical inert.

We can derive three formulations:

- Minimize the stack height;
- Maximum pollution computation and sampling stations planning;
- Air pollution abatement.

# Minimum stack height

Minimizing the stack height  $u=(h_1,\ldots,h_n)$ , while the pollution ground pollution level is kept below a given threshold  $\mathcal{C}_0$ , in a given region  $\mathcal{R}$ , can be formulated as a SIP problem

$$\min_{u \in R^n} \sum_{i=1}^n c_i h_i$$

s.t. 
$$g(u, v \equiv (x, y)) \equiv \sum_{i=1}^{n} C_i(x, y, 0, \mathcal{H}_i) \leq C_0$$
  
 $\forall v \in \mathcal{R} \subset \mathbb{R}^2$ 

where  $c_i$ ,  $i=1,\ldots,n$ , are the construction costs.

Note: more complex objective function can be considered.

# Maximum pollution and sampling stations planning

The maximum pollution concentration  $(l^*)$  in a given region can be obtained by solving the following SIP problem

$$\min_{l \in R} l$$

$$s.t. \ g(z, v \equiv (x, y)) \equiv \sum_{i=1}^{n} C_i(x, y, 0, \mathcal{H}_i) \leq l$$

$$\forall v \in \mathcal{R} \subset R^2.$$

The active points  $v^* \in \mathcal{R}$  where  $g(z^*, v^*) = l^*$  are the global optima and indicate where the sampling (control) stations should be placed.

## Air pollution abatement

Minimizing the pollution abatement (minimizing clean costs, maximizing the revenue, minimizing the economical impact) while the air pollution concentration is kept below a given threshold can be posed as a SIP problem

$$\min_{u \in R^n} \sum_{i=1}^n p_i r_i$$

s.t. 
$$g(u, v \equiv (x, y)) \equiv \sum_{i=1}^{n} (1 - r_i) C_i(x, y, 0, \mathcal{H}_i) \leq C_0$$
  
 $\forall v \in \mathcal{R} \subset \mathbb{R}^2$ ,

where  $u=(r_1,\ldots,r_n)$  is the pollution reduction and  $p_i$ ,  $i=1,\ldots,n$ , is the source i cost (cleaning or not producing).

# Modeling environment

SIPAMPL stands for "Semi-Infinite Programming with AMPL". SIPAMPL extends AMPL, allowing the SIP problems to be coded and provides:

- a database with more than 160 coded problems;
- an interface between SIPAMPL and any solver (NSIPS);
- an interface between SIPAMPL and MATLAB;
- a *select* tool.

SIPAMPL was used to code the proposed examples.

# Modeling and solving environment

NSIPS stands for "Nonlinear Semi-Infinite Programming Solver". NSIPS implements four different algorithms for SIP:

- Discretization;
- SQP;
- Penalty;
- Interior point.

NSIPS was used for solving the proposed problems. Discretization methods is the only one allowing finite constraints.

# Example - Minimum stack height (Wang and Luus, 1978)

Consider a region with 10 stacks. The environment temperature  $(T_e)$  is 283K and the emission gas temperature  $(T_o)$  is 413K. The wind velocity  $(\mathcal{U})$  is  $5.64ms^{-1}$  in the 3.996rad direction  $(\theta)$ .

The stack height in the table were used as initial guess and a squared region of 40km was considered ( $\mathcal{R} = [-20000, 20000] \times [-20000, 20000]$ ).

# Data for the 10 stacks

#### The stacks data is

| Source | $a_i$ | $b_i$ | $h_i$ | $d_i$ | $\mathcal{Q}_i$ | $(V_o)_i$   |
|--------|-------|-------|-------|-------|-----------------|-------------|
|        | (m)   | (m)   | (m)   | (m)   | $(gs^{-1})$     | $(ms^{-1})$ |
| 1      | -3000 | -2500 | 183   | 8.0   | 2882.6          | 19.245      |
| 2      | -2600 | -300  | 183   | 8.0   | 2882.6          | 19.245      |
| 3      | -1100 | -1700 | 160   | 7.6   | 2391.3          | 17.690      |
| 4      | 1000  | -2500 | 160   | 7.6   | 2391.3          | 17.690      |
| 5      | 1000  | 2200  | 152.4 | 6.3   | 2173.9          | 23.404      |
| 6      | 2700  | 1000  | 152.4 | 6.3   | 2173.9          | 23.404      |
| 7      | 3000  | -1600 | 121.9 | 4.3   | 1173.9          | 27.128      |
| 8      | -2000 | 2500  | 121.9 | 4.3   | 1173.9          | 27.128      |
| 9      | 0     | 0     | 91.4  | 5.0   | 1304.3          | 22.293      |
| 10     | 1500  | -1600 | 91.4  | 5.0   | 1304.3          | 22.293      |

#### Numerical results

Two threshold values were tested.  $C_0 = 7.7114 \times 10^{-4} gm^{-3}$  without a lower bound on the stack height,  $C_0 = 7.7114 \times 10^{-4} gm^{-3}$  with a stack lower bound height of  $10m^1$  and  $C_0^2 = 1.25 \times 10^{-4} gm^{-3}$ .

The stack height can only be inferior to 10m if some legal<sup>3</sup> requirements are met. One way to prove that the requirements are met is by simulation, using a proper model, of the air pollution dispersion.

<sup>&</sup>lt;sup>1</sup>Decree law number 352/90 from 9 November 1990.

<sup>&</sup>lt;sup>2</sup>Decree law number 111/2002 from 16 April 2002.

<sup>&</sup>lt;sup>3</sup>Decree law number 286/93 from 12 March 1993.

## Numerical results

|          | Instance 1 | Instance 2 | Instance 3 |
|----------|------------|------------|------------|
| $h_1$    | 0.00       | 10.00      | 196.93     |
| $h_2$    | 78.26      | 69.09      | 380.06     |
| $h_3$    | 0.00       | 10.00      | 403.12     |
| $h_4$    | 153.17     | 152.64     | 428.38     |
| $h_5$    | 80.90      | 71.27      | 344.81     |
| $h_6$    | 0.00       | 10.00      | 274.58     |
| $h_7$    | 13.52      | 13.52      | 402.83     |
| $h_8$    | 161.78     | 161.87     | 396.82     |
| $h_9$    | 141.73     | 141.63     | 415.58     |
| $h_{10}$ | 15.05      | 15.05      | 423.99     |
| Total    | 644.40     | 655.06     | 3667.10    |

# Constraint contour



# Example - Maximum pollution level and sampling stations planning (Gustafson *et al.*, 1977)

Computing the maximum pollution level  $(l^*)$  by fixing the stack height  $h_i$ .

A region with 25 stacks.

The region considered was  $\mathcal{R} = [0, 24140] \times [0, 24140]$  (square of about 15 miles).

Environment temperature of 284K, and wind velocity of  $5ms^{-1}$  in direction  $3.927rad~(225^o)$ .

#### Data for the 25 stacks

|        |       | <del> </del> |         |       |             |                |           |
|--------|-------|--------------|---------|-------|-------------|----------------|-----------|
| Source | $a_i$ | $b_i$        | $h_{i}$ | $d_i$ | $Q_{i_1}$   | $(V_O)_{\c i}$ | $(T_o)_i$ |
|        | (m)   | (m)          | (m)     | (m)   | $(gs^{-1})$ | $(ms^{-1})$    | (K)       |
| 1      | 9190  | 6300         | 61.0    | 2.6   | 191.1       | 6.1            | 600       |
| 2      | 9190  | 6300         | 63.6    | 2.9   | 47.7        | 4.8            | 600       |
| 3      | 9190  | 6300         | 30.5    | 0.9   | 21.1        | 29.2           | 811       |
| 4      | 9190  | 6300         | 38.1    | 1.7   | 14.2        | 9.2            | 727       |
| 5      | 9190  | 6300         | 38.1    | 2.1   | 7.0         | 7.0            | 727       |
| 6      | 9190  | 6300         | 21.9    | 2.0   | 59.2        | 4.3            | 616       |
| 7      | 9190  | 6300         | 61.0    | 2.1   | 87.2        | 5.2            | 616       |
| 8      | 8520  | 7840         | 36.6    | 2.7   | 25.3        | 11.9           | 477       |
| 9      | 8520  | 7840         | 36.6    | 2.0   | 101.0       | 16.0           | 477       |
| 10     | 8520  | 7840         | 18.0    | 2.6   | 41.6        | 9.0            | 727       |
| 11     | 8050  | 7680         | 35.7    | 2.4   | 222.7       | 5.7            | 477       |
| 12     | 8050  | 7680         | 45.7    | 1.9   | 20.1        | 2.4            | 727       |
| 13     | 8050  | 7680         | 50.3    | 1.5   | 20.1        | 1.6            | 727       |
| 14     | 8050  | 7680         | 35.1    | 1.6   | 20.1        | 1.5            | 727       |
| 15     | 8050  | 7680         | 34.7    | 1.5   | 20.0        | 1.6            | 727       |
| 16     | 9190  | 6300         | 30.0    | 2.2   | 24.7        | 9.0            | 727       |
| 17     | 5770  | 10810        | 76.3    | 3.0   | 67.5        | 10.7           | 473       |
| 18     | 5620  | 9820         | 82.0    | 4.4   | 66.7        | 12.9           | 603       |
| 19     | 4600  | 9500         | 113.0   | 5.2   | 63.7        | 9.3            | 546       |
| 20     | 8230  | 8870         | 31.0    | 1.6   | 6.3         | 5.0            | 460       |
| 21     | 8750  | 5880         | 50.0    | 2.2   | 36.2        | 7.0            | 460       |
| 22     | 11240 | 4560         | 50.0    | 2.5   | 28.8        | 7.0            | 460       |
| 23     | 6140  | 8780         | 31.0    | 1.6   | 8.4         | 5.0            | 460       |
| 24     | 14330 | 6200         | 42.6    | 4.6   | 172.4       | 13.4           | 616       |
| 25     | 14330 | 6200         | 42.6    | 3.7   | 171.3       | 16.1           | 616       |
|        |       |              |         |       |             |                |           |

#### Numerical results - contour

The maximum pollution level of  $l^* = 1.81068 \times 10^{-3} gm^{-3}$  in position (x,y) = (8500,7000).



# Example - Air pollution abatement (Gustafson and Kortanek, 1972)

Consider three plants  $(\mathcal{P}_1, \mathcal{P}_2 \text{ and } \mathcal{P}_3)$ , with emissions of  $e_1$ ,  $e_2$  and  $e_3$ , where  $0 \leq e_i \leq 2$ , (i=1,2,3) of a certain pollutant. By legal imposition the pollution level must not exceed a given threshold  $(\mathcal{C}_0)$  under mean weather conditions, i.e.,  $\theta=0$  and  $\mathcal{U}=\left(\frac{1}{2\pi}\right)^2ms^{-1}$ . Consider  $\mathcal{Q}=1gs^{-1}$  and  $\mathcal{C}_0=\frac{1}{2}$ . The remaining stacks data are

| Source | $a_i$ | $b_i$ | $h_i$      |
|--------|-------|-------|------------|
| 1      | 0     | 1     | 1          |
| 2      | 0     | 0     | 1          |
| 3      | 2     | -1    | $\sqrt{2}$ |

#### **Problem**

The emission rate reduction is to be minimized.

$$\min_{r_1, r_2, r_3 \in R} 2r_1 + 4r_2 + r_3$$

$$s.t. \sum_{i=1}^{3} (2 - r_i) \mathcal{C}(x, y, 0, \mathcal{H}_i) \le \mathcal{C}_0$$

$$0 \le r_i \le 2, \ i = 1, 2, 3$$

$$\forall (x, y) \in [-1, 4] \times [-1, 4].$$

#### Numerical results

Solution found  $r^* = (0.987, 0.951, 0.943)$ 

The maximum pollution is attained at  $(x,y)^1=(1.100,0.125)$ ,  $(x,y)^2=(1.100,0.100)$  and  $(x,y)^3=(3.675,-0.625)$ , where the sampling stations should be placed.

# Constraint contour



# Example - Air pollution abatement (Wang and Luus, 1978)

The data proposed by (Gustafson and Kortanek, 1972), in spite of illustrating the air pollution abatement problem, is not a real scenario.

We have used the data from (Wang and Luus, 1978) with the Portuguese limit of  $\left(\sum_{i=1}^{10} (1-r_i)C_i(x,y,0,\mathcal{H}_i) \leq 1.25 \times 10^{-4}gm^{-3}\right)$ .

#### Numerical results

The initial guess is  $r_i=0$ ,  $i=1,\ldots,10$ , corresponding to no reduction in all sources.

| $r_1$ | $r_2$ | $r_3$ | $r_4$ | $r_5$ | $r_6$ | $r_7$ | $r_8$ | $r_9$ | $r_{10}$ | Total |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|
| 0.11  | 0.61  | 1     | 0.69  | 1     | 0.23  | 0.75  | 0.56  | 1     | 1        | 6.95  |





## Conclusions

• Air pollution control problems formulated as SIP problems;

#### **Conclusions**

- Air pollution control problems formulated as SIP problems;
- Problems coded in (SIP)AMPL modeling language.

#### **Conclusions**

- Air pollution control problems formulated as SIP problems;
- Problems coded in (SIP)AMPL modeling language.

Numerical results obtained with the NSIPS solver;

#### References

- S.-Å. Gustafson and K.O. Kortanek. Analytical properties of some multiple-source urban diffusion models. *Environment and Planning*, 4:31–41, 1972.
- S-Å. Gustafson, K.O. Kortanek, and J.R. Sweigart. Numerical optimization techniques in air quality modeling: Objective interpolation formulas for the spatial distribution of pollutant concentration. *Applied Meteorology*, 16(12):1243–1255, December 1977.
- B.-C. Wang and R. Luus. Reliability of optimization procedures for obtaining global optimum. *AIChE Journal*, 24(4):619–626, 1978.

# The End

```
email: aivaz@dps.uminho.pt ecferreira@deb.uminho.pt
```

Web http://www.norg.uminho.pt/aivaz/ http://www.deb.uminho.pt/ecferreira/

First Page