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Motivation

One of the (many) applications of multi-local optimization is in
reduction type methods for semi-infinite programming (SIP)
problems.
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Motivation

One of the (many) applications of multi-local optimization is in
reduction type methods for semi-infinite programming (SIP)
problems.

A SIP problems can be posed as:

min
y∈Rq

o(y)

s.t. fi(y, x) ≥ 0, i = 1, . . . , m

∀x ∈ T ⊂ Rn,

where o(y) is the objective function and fi(y, x), i = 1, . . . , m,
are the infinite constraint functions.
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Motivation

One of the (many) applications of multi-local optimization is in
reduction type methods for semi-infinite programming (SIP)
problems.

A SIP problems can be posed as:

min
y∈Rq

o(y)

s.t. fi(y, x) ≥ 0, i = 1, . . . , m

∀x ∈ T ⊂ Rn,

where o(y) is the objective function and fi(y, x), i = 1, . . . , m,
are the infinite constraint functions.

A feasible point must satisfy:

fi(y, x) ≥ 0, i = 1, . . . , m, ∀x ∈ T

meaning that the global minima of fi must be upper than or
equal to zero.
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Multi-local optimization

Assume, for the sake of simplicity, that m = 1. Then we want to
address the following optimization problem

min
x∈Rn

f(x)

s.t. a ≤ x ≤ b

where f : Rn → R is the objective function and a, b are the
simple bounds on the variables x (defining the set T ).
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Multi-local optimization

Assume, for the sake of simplicity, that m = 1. Then we want to
address the following optimization problem

min
x∈Rn

f(x)

s.t. a ≤ x ≤ b

where f : Rn → R is the objective function and a, b are the
simple bounds on the variables x (defining the set T ).

In each iteration of a reduction type method for SIP we need to
obtain all the feasible global and local optima for function f(x).
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The Particle Swarm Paradigm (PSP)

The PSP is a population (swarm) based algorithm that mimics
the social behavior of a set of individuals (particles).

An individual behavior is a combination of its past experience
(cognition influence) and the society experience (social
influence).

In the optimization context a particle p, at time instant t, is
represented by its current position (xp(t)), its best ever position
(yp(t)) and its travelling velocity (vp(t)).
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The new travel position and velocity

The new particle position is updated by

xp(t + 1) = xp(t) + vp(t + 1),

where vp(t + 1) is the new velocity given by

v
p
j (t+1) = ι(t)vp

j (t)+µω1j(t)
(

y
p
j (t) − x

p
j (t)

)

+νω2j(t)
(

ŷj(t) − x
p
j (t)

)

,

for j = 1, . . . , n.

● ι(t) is a weighting factor (inertial)
● µ is the cognition parameter and ν is the social parameter
● ω1j(t) and ω2j(t) are random numbers drawn from the

uniform (0, 1) distribution.
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ŷj(t) − x
p
j (t)

)

,

for j = 1, . . . , n.

● ι(t) is a weighting factor (inertial)
● µ is the cognition parameter and ν is the social parameter
● ω1j(t) and ω2j(t) are random numbers drawn from the

uniform (0, 1) distribution.



Outline

Motivation

Multi-local

The PSP
❖ The Particle

Swarm Paradigm
(PSP)

❖ The new travel
position and
velocity

❖ The best ever
particle

❖ Features

MLPSO

Implementation

Numerical results

Conclusions

The end

A. Ismael F. Vaz and Edite M.G.P. Fernandes CEIO, Guimarães, 26-28 October, 2005 - p. 6/17

The new travel position and velocity

The new particle position is updated by

xp(t + 1) = xp(t) + vp(t + 1),

where vp(t + 1) is the new velocity given by

v
p
j (t+1) = ι(t)vp

j (t)+µω1j(t)
(

y
p
j (t) − x

p
j (t)

)

+νω2j(t)
(
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The best ever particle

ŷ(t) is a particle position with global best function value so far,
i.e.,

ŷ(t) = arg min
a∈A

f(a)

A =
{

y1(t), . . . , ys(t)
}

.

where s is the number of particles in the swarm.
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The best ever particle

ŷ(t) is a particle position with global best function value so far,
i.e.,

ŷ(t) = arg min
a∈A

f(a)

A =
{

y1(t), . . . , ys(t)
}

.

where s is the number of particles in the swarm.

In an algorithmic point of view we just have to keep track of the
particle with the best ever function value.
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Features

Population based algorithm.
1. Good

(a) Easy to implement.
(b) Easy to parallelize.
(c) Easy to handle discrete variables.
(d) Only uses objective function evaluations.

2. Not so good
(a) Slow rate of convergence near an optimum.
(b) Quite large number of function evaluations.
(c) In the presence of several global optima the algorithm

may not converge.
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PSP with the steepest descent direction

The new particle position is updated by

xp(t + 1) = xp(t) + vp(t + 1),

where vp(t + 1) is the new velocity given by

v
p
j (t+1) = ι(t)vp

j (t)+µω1j(t)
(

y
p
j (t) − x

p
j (t)

)

+νω2j(t)
(

−∇jf(yp
j (t))

)

,

for j = 1, . . . , n, where ∇f(x) is the gradient of the objective
function.

Each particle uses the steepest descent direction computed at
each particle best position (yp(t)).

The inclusion of the steepest descent direction in the velocity
equation aims to drive each particle to a neighbor local
minimum and since we have a population of particles, each
one will be driven to a local minimum.
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PSP with a descent direction

Other approach is to use

wp =
−1

∑m
k=1

|f(zp
k) − f(yp)|

m
∑

k=1

(f(zp
k) − f(yp))

(zp
k − yp)

‖zp
k − yp‖

as a descent direction at yp, in the velocity equation, to
overcome the need to compute the gradient.

Where
● yp is the best position of particle p

● {zp
k}

m
k=1

is a set of m (random) points close to yp,
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PSP with a descent direction

Other approach is to use

wp =
−1

∑m
k=1

|f(zp
k) − f(yp)|

m
∑

k=1

(f(zp
k) − f(yp))

(zp
k − yp)

‖zp
k − yp‖

as a descent direction at yp, in the velocity equation, to
overcome the need to compute the gradient.

Where
● yp is the best position of particle p

● {zp
k}

m
k=1

is a set of m (random) points close to yp,

Under certain conditions wp simulates the steepest descent
direction.
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Stopping criterion

We propose the stopping criterion

max
p

[vp(t)]opt ≤ ǫp

where

[vp(t)]opt =







n
∑

j=1











0 if x
p
j (t) = bj and v

p
j (t) ≥ 0

0 if x
p
j (t) = aj and v

p
j (t) ≤ 0

(

v
p
j (t)

)2

otherwise







1/2
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The stopping criterion is based on the optimality conditions for
the multi-local optimization problem.
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Environment

● Implemented in the C programming language
● Interfaced with AMPL (www.ampl.com)
● Both methods soon available in the NEOS server
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Test problems

Problems n Nx
∗ f∗ Problems n Nx

∗ f∗

1 b2 2 1 0.000E+00 17 rosenbrock5 5 1 0.000E+00

2 bohachevsky 2 1 0.000E+00 18 shekel10 4 1 -1.054E+01

3 branin 2 3 3.979E-01 19 shekel5 4 1 -1.015E+01

4 dejoung 3 1 0.000E+00 20 shekel7 4 1 -1.040E+01

5 easom 2 1 -1.000E+00 21 shubert 2 18 -1.867E+02

6 f1 30 1 -1.257E+04 22 storn1 2 2 -4.075E-01

7 goldprice 2 1 3.000E+00 23 storn2 2 2 -1.806E+01

8 griewank 6 1 0.000E+00 24 storn3 2 2 -2.278E+02

9 hartmann3 3 1 -3.863E+00 25 storn4 2 2 -2.429E+03

10 hartmann6 6 1 -3.322E+00 26 storn5 2 2 -2.478E+04

11 hump 2 2 0.000E+00 27 storn6 2 2 -2.493E+05

12 hump_camel 2 2 -1.032E+00 28 zakharov10 10 1 0.000E+00

13 levy3 2 18 -1.765E+02 29 zakharov2 2 1 0.000E+00

14 parsopoulos 2 12 0.000E+00 30 zakharov20 20 1 0.000E+00

15 rosenbrock10 10 1 0.000E+00 31 zakharov4 4 1 0.000E+00

16 rosenbrock2 2 1 0.000E+00 32 zakharov5 5 1 0.000E+00
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Parameters

● For each problem, the optimizer was run 5 times with
different initial particle positions and velocities (randomly
chosen from the search domain)

● The algorithm terminates if the stopping criterion is met with
ǫp = 0.01 or the number of iterations exceeds Nmax

t = 100000

● Coefficients µ and ν were both set to 1.2

● The inertial parameter ι(t) was linearly scaled from 0.7 to 0.2
over a maximum of Nmax

t iterations
● The swarm size is given by min(6n, 100), where n is the

problem dimension.
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Numerical results

Gradient version Approximate descent direction version

F.O. Nafe Nage f∗

a fbest F.O. Nafe f∗

a fbest

1 100 3444343 873 0,000E+00 0,000E+00 100 3602386 0,000E+00 0,000E+00

2 100 2782058 545 0,000E+00 0,000E+00 100 3600983 0,000E+00 0,000E+00

3 100 1740823 1397 3,979E-01 3,979E-01 100 3601171 3,979E-01 3,979E-01

4 100 1647820 4420 2,618E-23 0,000E+00 100 10003223 0,000E+00 0,000E+00

5 100 283500 70615 -1,000E+00 -1,000E+00 100 3601354 -1,000E+00 -1,000E+00

6 Not differentiable 100 10104250 -1,448E+04 -1,468E+04

7 20 3600000 59 2,431E+01 4,583E+00 100 3600967 3,000E+00 3,000E+00

8 20 10000000 7754 1,084E-02 0,000E+00 0 10004487 2,257E-02 1,503E-02

9 100 10000000 483 -3,850E+00 -3,861E+00 100 10002098 -3,862E+00 -3,863E+00

10 40 10000000 525 -2,937E+00 -3,185E+00 100 10002652 -3,202E+00 -3,242E+00

11 100 963259 1082 -1,032E+00 -1,032E+00 100 3600946 -1,032E+00 -1,032E+00

12 100 1171181 1329 4,651E-08 4,651E-08 100 3601098 2,362E-06 6,756E-07

13 0 3600000 439 -1,276E+02 -1,592E+02 49 3601052 -1,765E+02 -1,765E+02

14 85 2952979 2295 4,922E-23 3,749E-33 75 3600819 2,607E-07 9,685E-08

15 0 10000000 154 8,051E+04 3,387E+04 0 10009292 8,726E+00 7,386E+00

16 0 3600000 91 3,046E+00 1,190E+00 100 3601268 1,437E-06 5,698E-07
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Numerical results

Gradient version Approximate descent direction version

F.O. Nafe Nage f∗

a fbest F.O. Nafe f∗

a fbest

17 0 10000000 177 4,652E+03 2,393E+03 40 10005589 2,203E-01 1,327E-01

18 100 10000000 1850 -9,160E+00 -1,026E+01 100 10004066 -1,052E+01 -1,052E+01

19 100 10000000 2126 -7,801E+00 -8,760E+00 100 10003906 -1,012E+01 -1,014E+01

20 100 10000000 1909 -9,401E+00 -9,997E+00 100 10004069 -1,037E+01 -1,039E+01

21 0 3600000 335 -1,024E+02 -1,648E+02 60 3600999 -1,867E+02 -1,867E+02

22 100 1366222 973 -4,075E-01 -4,075E-01 100 3600804 -4,075E-01 -4,075E-01

23 100 3600000 570 -1,806E+01 -1,806E+01 100 3600902 -1,806E+01 -1,806E+01

24 100 3600000 194 -2,278E+02 -2,278E+02 100 3601003 -2,278E+02 -2,278E+02

25 100 3600000 167 -2,429E+03 -2,429E+03 100 3601160 -2,429E+03 -2,429E+03

26 90 3600000 81 -2,477E+04 -2,478E+04 100 3601278 -2,478E+04 -2,478E+04

27 10 3600000 58 1,607E+05 -2,436E+05 100 3601418 -2,493E+05 -2,493E+05

28 0 10000000 141 4,470E+02 3,102E+01 60 10009759 3,977E-02 2,506E-02

29 0 10000000 135 1,289E+05 7,935E+02 0 10016905 3,633E-01 2,404E-01

30 100 1433664 16314 8,325E-112 0,000E+00 100 3601264 4,987E-07 4,464E-08

31 100 10000000 313 1,997E-13 2,780E-21 100 10005221 2,231E-04 6,612E-05

32 40 10000000 160 8,338E+00 3,031E-04 100 10006065 2,005E-03 1,186E-03
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Conclusions

● We have presented a new multi-local optimization algorithm
that evaluates multiple optimal solutions for multi-modal
optimization problems

● Our MLPSO algorithm adapts the unimodal particle swarm
optimizer using descent directions information to maintain
diversity and to drive the particles to neighbor local minima

● Descent directions are obtained through the gradient vector
or an heuristic method to produce an approximate descent
direction.

● Experimental results indicate that the proposed algorithm is
able to evaluate multiple optimal solutions with reasonable
success rates.

● The use of a properly scaled gradient vector and the
optimizer performance analysis on high-dimensional
problems are issues under investigation.

● A inclusion of the proposed algorithm is planned to help a
reduction type method for semi-infinite programming.
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The end
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Web http://www.norg.uminho.pt/
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