
A particle swarm paradigm for nonlinear
constrained global optimization

A. Ismael F. Vaz and Edite M.G.P. Fernandes
Production and Systems Department - Engineering School

Minho University - Braga - Portugal

{aivaz,emgpf}@dps.uminho.pt
EUME 2005 - Vilnius - Lithuania

19-21 May 2005

Work partially supported by FCT grant POCTI/MAT/58957/2004 and Algoritmi research center



EUME-2005 - A.I.F. Vaz and E.M.G.P. Fernandes 1

Outline

• Nonlinear constrained global optimization

• The Particle Swarm Paradigm

• The dominance concept

• The proposed algorithm

• Numerical results

• Conclusions



EUME-2005 - A.I.F. Vaz and E.M.G.P. Fernandes 2

Nonlinear constrained global optimization
We address the following optimization problem

min
x∈Rn

f(x)

s.t. cE(x) = 0

cI(x) ≤ 0

l ≤ x ≤ u

where f(x) : Rn → R is the objective function, cE(x) : Rn → RmE are
the mE equality constraints functions, cI(x) : Rn → RmI are the mI
inequality constraints functions, l and u are the simple bounds on the
variables x. We allow li = −∞ and/or ui = +∞, meaning that the
variable xi (i = 1, . . . , n) may not have a lower and/or an upper bound.
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The Particle Swarm Paradigm (PSP)

The PSP is a population (swarm) based algorithm that mimics the social
behavior of a set of individuals (particles).

An individual behavior is a combination of its past experience (cognition
influence) and the society experience (social influence).

In the optimization context a particle p, at time instance t, is represented
by its current position (xp(t)), its best ever position (yp(t)) and its
travelling velocity (vp(t)).
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The new travel position and velocity

The new particle position is updated by

xp(t + 1) = xp(t) + vp(t + 1),

where vp(t + 1) is the new velocity given by

vp
j (t+1) = ι(t)vp

j (t)+µω1j(t)
(
yp

j (t)− xp
j(t)

)
+νω2j(t)

(
ŷj(t)− xp

j(t)
)

,

for j = 1, . . . , n, where ι(t) is a weighting factor (inertial), µ is the
cognition parameter and ν is the social parameter. ω1j(t) and ω2j(t) are
random numbers drawn from the uniform (0, 1) distribution.
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The best ever particle

ŷ(t) is a particle position with global best function value so far, i.e.,

ŷ(t) = arg min
a∈A

f(a)

A =
{
y1(t), . . . , ys(t)

}
.

In an algorithmic point of view we just have to keep track of the particle
with the best ever function value.
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The algorithm

1. Randomly initialize the swarm positions S =
{
x1(0), . . . , xs(0)

}
and

velocities V =
{
v1(0), . . . , vs(0)

}
.

2. Let t = 0 and yp(t) = xp(t), p = 1, . . . , s.

3. For all p in {1, . . . , s} do: If f(xp(t)) < f(yp(t)) then set yp(t+1) =
xp(t) else set yp(t + 1) = yp(t).

4. For all p in {1, . . . , s} do: Compute vp(t + 1) and xp(t + 1).

5. If the stopping criterion is true then stop. Otherwise set t = t + 1 go to
step 3.
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The (most used) stopping criterion

The stopping criterion used in the literature is related with the function
value at the global optimum.

The algorithm stops if either the objective function at the best ever particle
is approximately equal to the known objective minimum or a maximum
number of iterations is exceeded.

We will use a different stopping criterion.
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Features

1. Good

(a) Easy to implement.
(b) Easy to parallelize.
(c) Easy to handle discrete variables.
(d) Only uses objective function evaluations.

2. Not so good

(a) Slow rate of convergence near an optimum.
(b) High number of function evaluations.
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Measuring infeasibility

To measure the infeasibility of a particle we propose the following function

H(x) = e
P

i∈E log(1+|cEi (x)|)+
P

i∈I log(1+[cIi (x)]+)

where [c]+ = max{0, c}. The infeasibility function H(x) : Rn → R does
not account for the simple bound constraints as they are addressed by the
projection

P(x)i =


xi if li ≤ xi ≤ ui

li if xi < li
ui if xi > ui

, i = 1, . . . , n.
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Example

As an example of the infeasibility measure consider the hs014 problem
from Hock and Schittkowski test suite

min
x∈R2

f(x) ≡ (x1 − 2)2 + (x2 − 1)2

s.t. cE(x) ≡ x1 − 2x2 + 1 = 0

cI(x) ≡ x2
1

4
+ x2

2 − 1 ≤ 0.



EUME-2005 - A.I.F. Vaz and E.M.G.P. Fernandes 11

Example of H(x)
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Example
The combined plot for problem hs014 is
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Equivalent problem

For the infeasibility function H(x) we have

H(x)
{

= 1 if x is feasible
> 1 if x is infeasible.

Thus, the previous problem can then be replaced by the equivalent problem

min
x∈Rn

f(x)

s.t. H(x) = 1

l ≤ x ≤ u.
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The dominance concept in multiobjective
optimization

Consider two objective functions f1(x) and f2(x) (the extension to more
than two objective functions is straightforward)

Let f(x) = (f1(x), f2(x))T .

f(xi) is said to dominate f(xj) if and only if fk(xi) ≤ fk(xj), k = 1, 2,
and fk(xi) < fk(xj) for at least one k ∈ {1, 2}.

A point xi is said to be Pareto optimal if and only if there is no other point
xj such that f(xj) dominates f(xi).

Let P∗ denote the set of all Pareto optimal solutions. Then the set
{f(x) : x ∈ P∗} is called the Pareto front.
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Graphical interpretation
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Equivalent problem
Finding a global solution to the latter problem is somehow equivalent to
find a point x̄ for which (f(x̄),H(x̄)) dominates (f(x),H(x)), for all
x 6= x̄ and H(x̄) = 1.

Priority is given in minimizing H(x) over minimizing f(x).

For a point x̄ we consider that progress was attained if either

H(x) > H(x̄)

or

((H(x) ≤ H(x̄) or H(x̄) ≤ 1 + ε) and f(x) > f(x̄)) ,
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The proposed algorithm
1. Randomly initialize the swarm S =

{
x1(0), . . . , xs(0)

}
and swarm

velocities V =
{
v1(0), . . . , vs(0)

}
.

2. Let t = 0 and yp(t) = xp(t), p = 1, . . . , s.

3. For all p in {1, . . . , s} do: If H(yp(t)) > H(xp(t)) or ((H(yp(t)) ≤
H(xp(t)) or H(xp(t)) ≤ 1 + ε) and f(yp(t)) > f(xp(t))) then set
yp(t + 1) = xp(t) else set yp(t + 1) = yp(t).

4. For all p in {1, . . . , s} do: Compute vp(t + 1) and xp(t + 1).

5. If the stopping criterion is true then stop. Otherwise set t = t + 1 go to
step 3.
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The initial population
The initial swarm positions are randomly generated. If both simple bounds
are finite (li 6= −∞ and ui 6= ∞) the i coordinate of particle p position is
randomly generated by an uniform distribution on the interval [li, ui].

If one of the simple bounds is not finite then the algorithm requires an
initial guess, x̂. The coordinate i of particle p position is then randomly
generated by using

xp
i ∼


U

(
−‖x̂‖x̂i

2 , ‖x̂‖x̂i
2

)
if li = −∞ and ui = ∞

U (2x̂i − ui, ui) if li = −∞ and ui 6= ∞
U (li, 2x̂i − li) if li 6= −∞ and ui = ∞.

(1)

The initial guess, when provided by the user, is included in the initial
swarm.
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The stopping criterion

A typical stopping criterion is to stop the algorithm when the search
direction is approximately zero, meaning that progress is no longer possible.
This idea can also be used in the particle swarm context. Since in this
case, we are dealing with a population of points, a possible extension for
this criterion is to stop when all the search directions are approximately
zero, i.e.,

max
p∈S

‖vp(t + 1)‖ ≤ ε

where ε > 0 is a small tolerance.
When the stopping criterion is met, but the best ever particle position is
infeasible (H(ŷ) > 1) the swarm is reinitialized. The new swarm includes
the best ever found particle and the other particles are randomly initialized
following the previously described procedure.
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Connection to AMPL

AMPL (www.ampl.com) is a mathematical programming language that
allows the codification of optimization problems in a powerful and easy to
learn language.

AMPL also provides an interface that allows a wide variety of solvers to
communicate with it.

The implemented algorithm is available in the NLCPSOA (NonLinear
Constrained Particle Swarm Optimization Algorithm) solver. The solver
contains an interface to connect to AMPL allowing the user to write and
solve a problem coded in AMPL in an extremely easy way.

NLCPSOA returns to AMPL the best ever found solution.
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Test examples
We have used four engineering design problems and six additional problems

Number of
Variables Constraints

Problem Inequality Equality
Vessel 4 4 0
Beam 4 7 0
Spring 3 4 0

Himmelblau’s 5 3 (bound) 0
pso1 2 1 1
pso2 2 2 0
pso3 7 4 0
pso4 5 3 (bound) 0
pso5 5 3 (bound) 0
pso6 6 2 0
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Numerical results

Vessel design problem
Reported Obtained

x1 0.8125 0.778169
x2 0.4375 0.384649
x3 42.09845 40.3196
x4 176.6366 200
c1 0.0 -9.94553E-09
c2 -0.03588 -3.80778E-09
c3 -5.8208E-11 -5.84856E-04
c4 -63.3634 -40
f 6059.131296 5885.33

Beam design problem
Reported Obtained

x1 0.20573 0.201381
x2 3.47049 3.23192
x3 9.03662 10
x4 0.20573 0.201381
c1 0.0 -0.0292784
c2 0.0 -4972.77
c3 -5.5511151E-17 -3.58641e-07
c4 -3.432983785 -3.32625
c5 -0.0807296 -0.0763803
c6 -0.2355403 -0.239099
c7 -9.094947E-13 -0.00391764
f 1.72485084 1.81429
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Numerical results - Cont.

Spring design problem
Reported Obtained

x1(d) 0.051466369 0.05
x2(D) 0.351383949 0.310414
x3(N) 11.60865920 15
c1 -0.003336613 -3.30997e-06
c2 -1.0970128E-4 -0.0173742
c3 -4.0263180998 -186.267
c4 -0.7312393333 -0.759724
f 0.0126661409 0.0131926

Himmelblau’s design problem
Reported Obtained

x1 78.0 78
x2 33.0 33
x3 27.070997 27.1106
x4 45.0 45
x5 44.96924255 45
c1 92.0 92
c2 100.4047843 98.8726
c3 20.0 20.0196
f -31025.56142 -31012.1
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Numerical results - Cont.
Problem Obtained solution Reported best solution
pso1 1.39347 1.39343
pso2 -6961.81 -6961.837
pso3 680.63 680.639
pso4 -30665.5 -31544.459
pso5 -31026.4 -31545.054
pso6 -213 -213.0
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Numerical results - Cont.
Problem Objective value Function/Constraints evaluations
vessel 5885.33 879000
beam 1.81429 960300
spring 0.0131926 757800
himmelblau -31012 784200
pso1 1.39347 1417200
pso2 -6961.81 1461900
pso3 680.63 1689600
pso4 -30665.5 975300
pso5 -31026.4 792900
pso6 -213 879900
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Conclusions
• A new particle swarm optimization algorithm for nonlinear constrained

optimization, which aims to minimize infeasibility and the objective, is
described;

• It uses the dominance concept to handle constraints (easy implementa-
tion);

• Good numerical results with a set of problems;

• NLCPSOA connected to AMPL.

• This approach allows a bigger swarm to be used (in compare with previous
approaches).
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The End

email: aivaz@dps.uminho.pt
emgpf@dps.uminho.pt

Web http://www.norg.uminho.pt/aivaz/
http://www.norg.uminho.pt/emgpf/

First Page


