Tools for robotic trajectory planning
using cubic splines and semi-infinite
programming

A. Ismael F. Vaz and Edite M.G.P. Fernandes

Production and Systems Department - Engineering School
Minho University - Braga - Portugal
{aivaz, emgpf }Q@dps.uminho.pt
FGS 2004 - Avignon - France

19-24 September 2004

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Outline

Semi-Infinite Programming (SIP)
Robotics terminology

The trajectory planning problem
Cubic splines

Problems coded

Numerical results

Conclusions

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Semi-Infinite Programming (SIP)

Standard vs Generalized

min f(x)

zERM
sit. gi(x,t) <0,i=1,....m
hi(zx) <0,i=1,...,0
hi(r) =0, i=0+1,...,q
ViteT C RP

f(x) is the objective function, h;(x) are the finite constraint functions, g;(x,t) are the
infinite constraint functions and 1" is, usually, a cartesian product of intervals

([or, B1] X |a2, Ba] X -+ X |y, Bp))

If T depends on x (T'(x)) then problem is called generalized SIP, otherwise it is called a
standard SIP problem.

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Robotics terminology

Each link has a length and mass associated (dy, do, m1 and mgy for the
example with 2 links). The ability that the robot has to position the links is
called the degrees of freedom (d.of.) of the robot (3 d.o.f. in the example).

m
Y do 2

4 \J
(@p)
N

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Trajectory definition

In robot joint space the specification of the values for the d.o.f. are enough
to define the robot position in space. Since the robot position (d.o.f.
values) varies, we can define the path as a curve

O(1) = [01(7),02(7),....0,(1)]F 7€ 0, 7]

parametrized by 7, where [is the number of d.o f..

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Natural constraints

Possible constraints applied to the parametric curve are:

to impose a given inicial/final velocity,

db db
E(O) = p; and E(Tf) = vy

to impose a given inicial/final acceleration/deacceleration,

d?0 d*0
ﬁ(O) = a; and ﬁ(Tf) — le.

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Optimal cubic polynomial joint trajectories

Assume that [01(70), . . ., 01(7n)], [02(70), . . ., O2(7)]. . . . [6i(70),
.., 0;(1n)] are the vectors of points (knots) where the joint trajectory

passes through.

The optimization consists of finding the optimum total displacements time
that fits the joint trajectory by using cubic splines constrained to velocity,
acceleration, jerk and torque bounds.

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Some more notation

Let
to < t1 < --- <t, bea time sequence where ¢t; is the time where the
robot is in the joint position [01(7;), .. ., 0;(7;)]
hiy = t1 —tg, ho = to —t1, ..., h, = t,, — t,,_1 be the time

displacements

(:;(t) be the cubic spline for joint ¢ in [t;_1,¢;] and Q;(t) be the cubic
spline for joint 7.

We will use the notation Q'(t) = %}Et) for the derivative.

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Generalized SIP

The SIP problem can be formulated in the following mathematical form:

minZhj =1, — to

g=1 where C; 1, Cj 2, C; 3 and Cj are
sit. |Qi(t)] < Cia the bounds for the velocity, acce-
Q') < Cio leration, jerk and torque, respecti-
Q3" (t)] < Cigs
Ft)|<C;, i=1,..,1
hy >0 j5=1,...,n;
Vt € [to, tn]

vely, on joint 4.

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Torque expression

The expression for the manipulator’s torque is

}7() banQ"()%—EgnJQ<:)4‘£? }::Lg

71=1
[[
+2_ 2 Can(Q(
1=1 k=1

where for the ¢th robot joint

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes 10

Torque expression (cont.)

Ji=motor inertia (J; >0, i =1,...,1);
n;=gear ratio;
B;=viscous damping coefficient (B; >0, i =1,...,1);
(Li5(Q(t)))si j=1,... 1=inertia matrix (positive definite);
(Cijk(Q(1)))i.j.k=1,...1=Coriolis tensor;
d;(Q(t))=gravitational torque.

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes 11

Reformulation as standard SIP

71=1
s.t. |Q; (7‘ Z hi + to> < G

k=1 using the linear
Q" (Tzhk +io || < Cis transformstion

k=1 t =72 —1hk+to
Q" <7‘ Z hp+to || < Cis

k=1
Fz<72hk‘|‘t0> <Oz'7 7/_17 >l

k=1

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes 12

Cubic splines
Assume, for clarity of notation, only one joint. ((t) is the function that
approximates the joint trajectory f(t) and Q;(t), ¢ =1,...,n, are the
cubic spline segments that approximate the function in [t;_1,t;].

Given a finite number of data points, fo = f(tg), . .., fn = f(tn), a
C-Spline is formed by n cubic polynomials (Q;(t), ¢ = 1,...,n) that
interpolate the given data points. The set of the Q;(¢t), ¢ = 1,...,n will

provide a cubic approximation to the function f(#). Since Q;(%) is a cubic
polynomial, the second derivatives w.r.t. ¢ can be expressed as

t; — 1 t—1t;—
: Mi_1—|— lei, iZl,...,n
ti —ti—1

!/

where M, is the second derivative of f(t) at ;.

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Cubic splines (cont.)
Integrating Q7 () twice and imposing the (continuity) conditions
Qi(t;—1) = fi_1 and Q;(t;) = f; results in the following interpolating
functions:

Qu(t) =2ty — 1) + it)

Ji—1 hiM;_4
— t; —t
+< n o) ti—1)
i hiM,; .
+<{L_¢_ 6)(t—tvz—l)» t=1,...,m,

where hz = ti — ti—l-

The C-Spline is completely defined if the M;, ¢+ = 0,...,n, are known.

13

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes 14

Cubic splines (cont.)

Imposing the continuity of the first derivative, Q;(%;) = Qi1 (%),
1 =1,...,n— 1, results in a tridiagonal system from where the M,
1 =1,...,n — 1 can be obtained.

It we assume My = M,, = 0 we have a natural cubic spline.

If we assume Q7 (to) = f§ and Q' (t,) = fI we have a complete cubic
spline.

Problems to approximate trajectories need to specity the first and second
derivatives at the extreme of the spline (initial /final velocity and
acceleration).

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes 15

Cubic splines (cont.)

Two more degrees of freedom are necessary and the goal is achieved by
considering two extra knots where the f values are not specified.

tO t1 t2 tn tn—3 tn—2 tn—l tn

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Cubic splines (cont.)

Consider, without loss of generality, that ¢1 and ¢,,_1 are the extra knots.

Solving
Q1(to) = v;

Q. (tn) = vf

for the two unknowns f; and f,,_1 results in

hiMo | hiMy

— hiv;
J1 f0+1v+3 6

WMy oM,y
3 6

fn—l — fn — vfhn +

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Cubic splines (cont.)

Replacing f1 and f,,—1 in the natural C-Spline tridiagonal system results in
a new tridiagonal system also to be solved for the M;, ¢+ =1,...,n—1,
unknowns.

17

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

AMPL

AMPL (Algebraic Modeling Programming Language) is a modeling
language for mathematical programming.

AMPL

does not allow semi-infinite programming problems to be coded:;

is unable to solve a linear system.

AMPL is commercial software but a student edition is available for
evaluation (http://www.ampl.com).

18

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Splines dynamic library for AMPL

An external dynamic splines library was built for AMPL, providing B (out
of the talk) and C-Splines.

The function syntax is

cspline (¢,d,n, h1,ho, ..., hn, f1, fos ooy fr—1, Vi, V¢, @i, af)

where ¢ and hq, ..., h, are AMPL variables. d, n, f1,..., fn—1, v, V¢,

a; and ay are constants, where d is the derivative order (0 for the C-Spline,

1 for the first, 2 for the second and 3 for the third derivatives w.r.t. t).

19

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes 20

SIPAMPL

SIPAMPL is an extension for AMPL, allowing the codification (modeling)
of SIP problems. SIPAMPL today provides:

a database with more than 160 SIP problems coded
a dynamic B and C-Splines library (robotics problems)
interface routines between AMPL and any SIP solver (NSIPS) - SIPAMPL

routines

interface routines between MATLAB and SIPAMPL routines

a Select tool

SIPAMPL is publicly available in (http://www.norg.uminho.pt/aivaz/)

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

A robotics example

The total travel time is to be minimized while the velocity is to be bounded
by a constant:

5
min h;
heR®
1=1
5}
st. —100< Q' <72hi> < 100
1=1

h; >0, Vrelo,1].

A possible codification of this problem in (SIP)AMPL format is the
following:

21

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

declare used external funtions
function cspline;

number of coefficients
param n:=5;

number of knots (nk = n-1)
param nk:=4;

knots vector

param f{1..nk};

initial guess for spaces
param hinit{1l..n};

coefficients

var h{i in 1..n}:=hinit[i];
parameter

var tau:=0;

initial and final velocity
and acceleration

param vi:=0;

param vf:=0;

param ai:=0;

param af:=0;

22

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

declare used external funtions
function cspline;

number of coefficients
param n:=5;

number of knots (nk = n-1)
param nk:=4;

knots vector

param f{1..nk};

initial guess for spaces
param hinit{1l..n};

coefficients

var h{i in 1..n}:=hinit[i];
parameter

var tau:=0;

initial and final velocity
and acceleration

param vi:=0;

param vf:=0;

param ai:=0;

param af:=0;

to save some space we define a variable
which is the C-Spline
var g=cspline(taux(sum {i in 1..n} (h([i])),1,n,
{i in 1..n}h[i], {i in 1..nk}f[i],vi,vf,ai,af);

minimize obj:
(sum {i in 1..n} (h[i]));

subject to tcons:
-100 <= g <= 100;

subject to bounds {i in 1..n}:
h[i] >= 0;

subject to tbounds:
0 <= tau <= 1;

22

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

declare used external funtions
function cspline;

number of coefficients
param n:=5;

number of knots (nk = n-1)
param nk:=4;

knots vector

param f{1..nk};

initial guess for spaces
param hinit{1l..n};

coefficients

var h{i in 1..n}:=hinit[i];
parameter

var tau:=0;

initial and final velocity
and acceleration

param vi:=0;

param vf:=0;

param ai:=0;

param af:=0;

to save some space we define a variable
which is the C-Spline
var g=cspline(taux(sum {i in 1..n} (h([i])),1,n,
{i in 1..n}h[i], {i in 1..nk}f[i],vi,vf,ai,af);

minimize obj:
(sum {i in 1..n} (h[i]));

subject to tcons:
-100 <= g <= 100;

subject to bounds {i in 1..n}:
h[i] >= 0;

subject to tbounds:
0 <= tau <= 1;

data;

knots
param f :=
1 1.5

2
5

2
3 1.7
4 1.8

5

22

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

to save some space we define a variable
which is the C-Spline
var g=cspline(tau*(sum {i in 1..n} (h([i])),1,n,

declare used external funtions {i in 1..n}h[il, {i in 1..nk}f[il,vi,vf,ai,af);
function cspline;

number of coefficients ninimize obj:

param n:=s; (sum {i in 1..n} (a[il));
number of knots (nk = n-1)
param nk:=4; subject to tcons:

knots vector ~100 <= g <= 100;
param f{1..nk}; ’
subject to bounds {i in 1..n}:
initial guess for spaces nli] >= 0:

param hinit{1l..n}; ’

subject to tbounds:

coefficients 0 <= tau <= 1;

var h{i in 1..n}:=hinit[i];
parameter

var tau:=0; data; # initial guess
initial and final velocity # knots param hinit :=
and acceleration param f := 1 0.5
param vi:=0; 1 1.5 2 0.25
param vf:=0; 2 2 3 0.75
param ai:=0; 3 1.75 4 0.5
param af:=0; 4 1.8; 5 0.25;

FGS 2004 - A.LLF. Vaz and E.M.G.P. Fernandes 23
Problems coded (1in2.mod)
Unimate PUMA 560 type robot with 6 revolute joints

minimum time trajectory planning with simple velocity, acceleration and
jerk constraints

vi:vf:ai:af:()

hY = [3.607,3.607,2.878,4.275,5.612,2.915, 5.879, 1.336, 1.336],
giving a total time of 31.445 seconds (tg = 0, t,, = 31.445)

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

knot Joint1 Joint2 Joint3 Joint4 Jointh5 Joint 6
position in degrees
1 10 15 45 5 10 6
2 60 25 180 20 30 40
3 75 30 200 60 40 80
4 130 45 120 110 -60 70
5 110 -55 15 20 10 -10
6 100 -70 -10 60 50 10
7 -10 -10 100 -100 -40 30
8 -50 10 50 -30 10 20
Bounds Joint 1 Joint2 Joint3 Joint4 Jointh Joint 6
Velocity (degrees/sec) 100 95 100 150 130 110
Acceleration (degrees/sec?) 45 40 75 70 90 80
Jerk (degrees/secd) 60 60 55 70 75 70

24

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes 25

Problems coded (delucasl.mod and delucas2.mod)

delucal.mod is a light robot with 2 joints and deluca2.mod is a planar
motion of an IBM 7535 robot with 2 joints.

ll 12 d2 mo my Jl J2 Jp

(m) (m) (m) (kg) (kg) (kgm?) (kgm?) (kgm?)
delucal 05 05 025 1 0 0084 0084 0
deluca2 04 025 0125 15 6 1.6 0.34 0.01

where [; and J; (¢ = 1, 2) are the length and moment of inertia, w.r.t. the
axis of the driving joint for link %, g is the mass of link 2, while m,, and
J, are the mass and centroidal inertia of the payload. ds is the distance
between the axis of the second link joint and the center of mass of the
second link.

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

These problems contain velocity and torque constraints. The velocity limit
was 2 rad/sec for both joints and 7 Nm and 2 N'm were the torque
limits in joint 1 and joint 2, respectively.

Problem Joint w; (rad/sec) vy (rad/sec) a; (rad/sec?) ay (rad/sec?)

delucal 1 0 0 13.830794 -0.415203
2 0 0 -11.067942 -4.136542
deluca2 1 0 0 2.5207742 -2.1966904
2 0 0 2.5207742 -2.1966904

26

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

The initial time intervals, in seconds, considered were
h’ =11,1,0.5,0.5,0.5,0.5,0.5] and
hY =10.3,0.3,0.3,0.3,0.3,0.3,0.3] for delucal and deluca2,

respectively.

Problem Joint Position in radians (knots)
1 2 3 4 5 6
delucal 10 05 0.75 1 125 15

2 0 -05 -1 -15 -1 05
deluca?2 1land2 01 02 025 03 035 04

27

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Problems coded (lobiancol.mod)

The robot arm (with two joints) is considered in initial and final rest
position (v; = v = a; = ay = 0). The problem considers torque, linear
and angular velocity limits of 260 Nm, 50 Nm, 0.7 m/sec and 1.5
rad/sec, respectively.

[y (m) 2 (m) my (kg) ma (kg)
1.0 0.5 15.0 7.0

where [; and m;, © = 1, 2, are the link lengths and the link masses.

h’ =10.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5] was used as a

initial guess which gives a total time travel of 5.5 sec.

28

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Knot

Joint 1 (rad)

Joint 2 (rad)

O OO0 N & 1 B~ W DN =

—
-

0.0000
0.1253
0.2517
0.3739
0.5054
0.5837
0.6119
0.4263
0.3903
0.3526

-1.5708
-1.6804
-1.7594
-1.8074
-1.8235
-1.7087
-1.4581
-1.1040
-1.1124
-1.1152

29

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Numerical results

1in2 lobiancol

NSIPS Prev. NSIPS Prev.
hq 1.125150 1.131000 0.010000 0.020000
ho 2.039520 2.004000 0.348599 0.364290
hs 1.635940 2.068000 0.156699 0.184190
hy 2.158020 2.016000 0.150559 0.183860
hs 2.046600 2.714000 0.154683 0.184230
hg 2510830 1.973000 0.138140 0.167350
h~ 3.781200 3.807000 0.191483 0.223100
hg 1.831450 1.971000 0.391619 0.365390
hg 0.803105 0.767000 0.106903 0.099450
h1o 0.022016 0.238180
hi1 0.385888 0.020050
Total 17.931800 18.45100 2.057190 2.050090

30

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Numerical results (cont.)

delucal deluca?

NSIPS Prev. NSIPS Prev.
hq 0.010000 0.370000 0.010000 0.290000
ho 0.348255 Extra knot 0.134696 Extra knot
hs 0.260631 0.250000 0.053838 0.070000
h 0.361528 0.340000 0.050015 0.070000
hs 0.351404 0.430000 0.051988 0.080000
he 0.010000 Extra knot 0.066819 Extra knot
h~ 1.061350 1.070000 0.010000 0.200000
Total 2.403170 2.460000 0.377956 0.710000

31

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Plots - Joint 1 and 2 of 1in2

Position
Velocity
Acceleration
Jerk

Position
Velocity
Acceleration
Jerk

32

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Plots - Joint 3 and 4 of 1in2

—— Position —— Position
Velocity Velocity

— - Acceleration — - Acceleration

- — Jerk - — Jerk

33

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Plots - Joint 5 and 6 of 1in2

—— Position Position
Velocity Velocity
Acceleration Acceleration

Jerk

34

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Plots - Joint 1 and 2 of delucal

—— Position
Velocity
— - Torque

— - Torque

35

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Plots - Joint 1 and 2 of deluca?

—— Position
Velocity
— - Torque

—— Position
Velocity
— - Torque

36

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Plots - Position and Torque of lobiancol

—— Joint 1 position —— Joint 1 torque
Joint 2 position Joint 2 torque

37

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Plots - Linear and angular velocity of lobiancol

—— Linear velocity
Angular velocity

38

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Conclusions

Robot trajectory planning can be posed as SIP problems;

39

FGS 2004 - A.l.LF. Vaz and E.M.G.P. Fernandes
Conclusions
Robot trajectory planning can be posed as SIP problems;

C-Splines dynamic library for AMPL is provided:;

http://www.norg.uminho.pt/aivaz/

39

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Conclusions

Robot trajectory planning can be posed as SIP problems;

C-Splines dynamic library for AMPL is provided:;

http://www.norg.uminho.pt/aivaz/

Four (more) test problems coded in SIPAMPL;

39

FGS 2004 - A.l.LF. Vaz and E.M.G.P. Fernandes
Conclusions
Robot trajectory planning can be posed as SIP problems;

C-Splines dynamic library for AMPL is provided:;

http://www.norg.uminho.pt/aivaz/
Four (more) test problems coded in SIPAMPL;

Numerical results with the NSIPS solver (discretization method);

39

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

email:

W&

The End

aivaz@dps.uminho.pt
emgpf@dps.uminho.pt
http://www.norg.uminho.pt/aivaz/
http: //www.norg.uminho.pt/emgpf/

40

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes 41

Coefficients matrix

(o |
3h1 + 2ho + Ty ho 0
h2
ho — h—; 2(hg + h3) hs3
h; Q(hi“‘h’i—l—l) i1 1 =3,...,n—3
: ,
hpn—2 2(hp—2+ hp-1) hp—1 — hnil
2
0 hn1 3hp + 2Ry 1 +
hp—1

FGS 2004 - A.l.F. Vaz and E.M.G.P. Fernandes

Independent term

2
ol) ol g) (s 52 o
2

fz' 1_fz fz fz .
6(;;+1 7), 1 =3,...,n—3

SR)
n6_1 (fn — fn—2 — Ufhn + —hnéwn) — 06 (fn_2 In=3

;)

)

