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Problem formulation

We are addressing the problem in the following mathematical
form

min
z∈Rn

f(z)

s.t. ℓ ≤ z ≤ u,

where ℓ ≤ z ≤ u are to be understood has componentwise
inequalities.

To apply the particle swarm paradigm or the pattern search
smoothness of the objective function f(z) is not requested.

For the theoretical results of the pattern search and therefore
of the hybrid algorithm some smoothness of the objective
function f(z) is imposed.
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Particle Swarm paradigm (PS)

Population based algorithms tries to mimic the social behavior
of a population (swarm) of individuals (particles).

An individual behavior is a combination of its past experience
(cognitive influence) and from the society experience (social
influence).

In the optimization context, one particle p, at time instance t, is
represented by its current position (xp(t)), its best ever position
(yp(t)) and a traveling velocity (vp(t)).

Let ŷ(t) represent the best particle position of the population.
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New position and velocity

The new particle position is updated by

xp(t + 1) = xp(t) + vp(t + 1),

where vp(t + 1) is the new velocity given by

vp
j (t+1) = ι(t)vp

j (t)+µω1j(t)
(

yp
j (t) − xp

j (t)
)

+νω2j(t)
(

ŷj(t) − xp
j (t)

)

,

for j = 1, . . . , n.

● ι(t) is the inertial factor
● µ is the cognitive parameter and ν is the social parameter
● ω1j(t) and ω2j(t) are random numbers drawn from the

uniform (0, 1) distribution.
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New position and velocity

The new particle position is updated by
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Handling constraints

Simple bound constraints are handled by a projection onto
Ω = {x ∈ R

n : ℓ ≤ x ≤ u}, for all particles i = 1, . . . , s.

projΩ(xi
j(t)) =











ℓj if xi
j(t) < ℓj ,

uj if xi
j(t) > uj ,

xi
j(t) otherwise,

for j = 1, . . . , n.

The projection is applied to the new particles position.
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Example with ir2.mod problem
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Some properties

● Easy to implement.
● Easy to deal with discrete variables.
● Easy to paralelize.
● For a correct choice of parameters the algorithm terminates

(limt→+∞ v(t) = 0).
● Only objective function evaluations (without derivatives or

approximation to derivatives).
● Convergence for a global optimum, but with a slow rate of

convergence near an optimum.
● High number of function evaluations.
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Pattern search
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Introduction to direct methods

Direct search methods are an important class of optimization
methods that try to minimize a function by comparing objective
function values at a finite number of points.
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function values at a finite number of points.

Direct search methods do not use derivative information of the
objective function nor try to approximate it.
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Introduction to direct methods

Direct search methods are an important class of optimization
methods that try to minimize a function by comparing objective
function values at a finite number of points.

Direct search methods do not use derivative information of the
objective function nor try to approximate it.

Pattern search method belongs to the class of direct search
methods where its structure is more rigid.
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Some definitions

Let
D⊕ = {e1, . . . , en,−e1, . . . ,−en}

be a positive maximal basis.
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Some definitions

Let
D⊕ = {e1, . . . , en,−e1, . . . ,−en}

be a positive maximal basis.

The direct method base on this set is known as coordinate or
compass search.

Given a generating set D and the current point y(t) two sets of
points are defined: a grid Mt and the poll set Pt. The grid Mt is
given by

Mt =
{

y(t) + α(t)Dz, z ∈ N
|D|
0

}

,

where α(t) > 0 is the grid size parameter. The poll set is given
by

Pt = {y(t) + α(t)d, d ∈ D} .
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Mt and Pt sets example

y(t)
y(t)+α(t)e

1

y(t)+α(t)e
2

y(t)−α(t)e
1

y(t)−α(t)e
2

The set Mt

and the set
Pt when D =
{e1, e2,−e1,−e2}
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Pattern search

The search step conducts a finite search on the Mt grid.
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Pattern search

The search step conducts a finite search on the Mt grid.

If no success is obtained in the search step then a poll step
follows.
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Pattern search

The search step conducts a finite search on the Mt grid.

If no success is obtained in the search step then a poll step
follows.

The poll step evaluates the objective function in the elements
of Pt in searching for points that has a lower objective function
value.

If a success it attained the value of α(t) may be expended,
otherwise it is reduced.
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Handling bound constraints

For the coordinate search method it is sufficient to initialize the
algorithm with a feasible initial guess (y(0) ∈ Ω) and to use f̂
as the objective function.

f̂(z) =

{

f(z) if z ∈ Ω,

+∞ otherwise.
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Motivation

The hybrid algorithm tries to combine the best of each
algorithms.

The particle swarm ability of searching for the global optimum.

The guaranty to obtain at least a stationary point in the pattern
search.

Central idea: To apply the particle swarm algorithm in the
search step and when no further success is possible to apply
the poll step.
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Example with ir2.mod problem
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Example with ir2.mod problem
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Example with ir2.mod problem
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Example with ir2.mod problem
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Example with ir2.mod problem
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Example with ir2.mod problem
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Example with ir2.mod problem
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Example with ir2.mod problem
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Example with ir2.mod problem
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Global convergence

Teorema 1 Let L(ŷ(0)) = {z ∈ R
n : f(z) ≤ f(ŷ(0))} be a

bounded set. Then, there exists a subsequence {ŷ(tk)} of the
iterates produced by the hybrid algorithm (with αtol = vtol = 0)
such that

lim
k−→+∞

ŷ(tk) = ŷ∗ and lim
k−→+∞

α(tk) = 0,

for some ŷ∗ ∈ Ω and such that the subsequence {tk} consists
of unsuccessful iterations.



Convergence
❖ Global

convergence
❖ Finite termination

ISMP 2006 UFRJ, Rio de Janeiro, Brazil, July 30-August 4, 2006 - p. 38/52

Finite termination

Teorema 2 Suppose that for t sufficiently large one has that
ι(t), E(yi(t)), i = 1, . . . , s, and E(ŷ(t)) are constant and that
E(projMt

(xi(t− 1) + vi(t))) = E(xi(t− 1) + vi(t)), i = 1, . . . , s.
Then, if the control parameters for particle swarm, ῑ, ω̄1, ω̄2, µ,
and ν, are chosen so that max{|a|, |b|} < 1, where
ω̄1 = E(ω1(t)), ω̄2 = E(ω2(t)), ῑ = ι(t) for all t, and a and b are
defined respectively by (1) and (2), then

lim
t−→+∞

E(vi
j(t)) = 0, i = 1, . . . , s, j = 1, . . . , n.

and the hybrid algorithm will stop almost surely in a finite
number of iterations.

a =
(1 + ῑ − µω̄1 − νω̄2) +

√

(1 + ῑ − µω̄1 − νω̄2)2 − 4ῑ

2
, (1)

b =
(1 + ῑ − µω̄1 − νω̄2) −

√

(1 + ῑ − µω̄1 − νω̄2)2 − 4ῑ

2
. (2)
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Test problems

122 problems were collected from the global optimization
literature.

12 problems of high dimension (between 100 and 300
variables). The others are small (< 10) and medium size
(< 30).

Majority of objective functions are differentiable, but
multimodal.

All problems have simple bounds on the variables (needed for
the search step — particle swarm).

The test problems were coded in AMPL (A Modeling Language
for Mathematical Programming).

Test problems available on
http://www.norg.uminho.pt/aivaz (under software).
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How to compare the solvers performance?

Performance profiles – Dolan and Moré, 2003.

One advantage of the performance profiles is that it can be
represented in one figure, drawing for each solver a cumulative
distribution function ρ(τ) representing the performance ratio.
ρs(1) is the probability of solver s winning over the remaining
ones. Bigger ρs(1) values means higher probability of winning
(be the best).

On the other hand solvers with higher ρs(τ), τ → ∞, are the
most robust. If ρs(τ) = 1 then solver s solved all the problems.
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Used parameters

PSwarm
αtol = 10−5, ν = µ = 0.5, φ(t) = 2, θ(t) = 0.5,
α(0) = maxj=1,..,n(uj − ℓj)/c with c = 5 and s = 20.

The inertial parameter ι was linearly interpolated between 0.9
and 0.4, i.e., ι(t) = 0.9 − (0.5/tmax)t, where tmax is the
maximum number of iterations allowed.

The initial population is obtained by generating s random
points drawn from the uniform distribution U(ℓ, u), i.e.,
xi

j(0) ∼ U(ℓj, uj), j = 1, . . . , n, for all particles i = 1, . . . , s

(initial feasible approximations).

PGAPack
Genetic algorithm population of 200.
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Average objective value
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Average of objective function evaluations
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Average of objective function evaluations
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Average number of o.f. evaluation

maxf ASA PGAPack PSwarm Direct MCS

1000 857 1009 686 1107 1837

10000 5047 10009 3603 11517 4469
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Pattern search vs Particle swarm vs PSwarm
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Pattern search vs Particle swarm vs PSwarm
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Conclusions
● Development of an hybrid algorithm for global optimization.
● Convergence and termination properties of the algorithm.
● PSwarm shown to be an robust and competitive algorithm.

Future work
● Parallel version since both particle swarm and pattern search

are easy to parallelize.
● More general constraints handling (linear and nonlinear).
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The End

email: aivaz@dps.uminho.pt

Web http://www.norg.uminho.pt/

email: lnv@mat.uc.pt

Web http://www.mat.uc.pt/∼lnv


	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline


	Introduction
	Problem formulation

	Particle Swarm
	Particle Swarm paradigm (PS)
	New position and velocity
	New position and velocity
	New position and velocity
	New position and velocity

	Handling constraints
	Example with ir2.mod problem
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Some properties
	Some properties
	Some properties
	Some properties
	Some properties
	Some properties
	Some properties


	Pattern search
	Introduction to direct methods
	Introduction to direct methods
	Introduction to direct methods

	Some definitions
	Some definitions
	Some definitions

	Mt and Pt sets example
	Pattern search 
	Pattern search 
	Pattern search 

	Handling bound constraints

	The hybrid algorithm
	Motivation
	Example with ir2.mod problem
	Example with ir2.mod problem
	Example with ir2.mod problem
	Example with ir2.mod problem
	Example with ir2.mod problem
	Example with ir2.mod problem
	Example with ir2.mod problem
	Example with ir2.mod problem
	Example with ir2.mod problem

	Convergence
	Global convergence
	Finite termination

	Numerical results
	Test problems
	How to compare the solvers performance?
	Used parameters
	Average objective value
	Average objective value
	Average of objective function evaluations
	Average of objective function evaluations
	Average number of o.f. evaluation
	Pattern search vs Particle swarm vs PSwarm
	Pattern search vs Particle swarm vs PSwarm

	Conclusions and future work
	Conclusions and future work
	Conclusions and future work
	Conclusions and future work
	Conclusions and future work
	Conclusions and future work


	The End
	The End


