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Semi-Infinite Programming

min
x∈Rn

f(x)

s.t. gi(x, t) ≤ 0, i = 1, ...,m

hi(x) ≤ 0, i = 1, ..., o

hi(x) = 0, i = o + 1, ..., q

∀t ∈ T

(1)

where f(x) is the objective function, hi(x) are the finite constraint

functions, gi(x, t) are the infinite constraint functions and T ⊂ Rp

is, usually, a cartesian product of intervals

([α1, β1]× [α2, β2]× · · · × [αp, βp]).
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Solver
NSIPS (Nonlinear Semi-Infinite Programming Solver)



HPSNO’04 - Ischia - A.I.F. Vaz, E.M.G.P. Fernandes and M.P.S.F. Gomes 3

Solver
NSIPS (Nonlinear Semi-Infinite Programming Solver)

Version 2.1 publicly available in the internet

http://www.norg.uminho.pt/aivaz/, implementing the four methods in

a total of seven algorithms.



HPSNO’04 - Ischia - A.I.F. Vaz, E.M.G.P. Fernandes and M.P.S.F. Gomes 3

Solver
NSIPS (Nonlinear Semi-Infinite Programming Solver)

Version 2.1 publicly available in the internet

http://www.norg.uminho.pt/aivaz/, implementing the four methods in

a total of seven algorithms.

NSIPS receives the problem in the (SIP)AMPL format.



HPSNO’04 - Ischia - A.I.F. Vaz, E.M.G.P. Fernandes and M.P.S.F. Gomes 3

Solver
NSIPS (Nonlinear Semi-Infinite Programming Solver)

Version 2.1 publicly available in the internet

http://www.norg.uminho.pt/aivaz/, implementing the four methods in

a total of seven algorithms.

NSIPS receives the problem in the (SIP)AMPL format.

The method is select by the nsips options, and there are many other

options for each method.



HPSNO’04 - Ischia - A.I.F. Vaz, E.M.G.P. Fernandes and M.P.S.F. Gomes 3

Solver
NSIPS (Nonlinear Semi-Infinite Programming Solver)

Version 2.1 publicly available in the internet

http://www.norg.uminho.pt/aivaz/, implementing the four methods in

a total of seven algorithms.

NSIPS receives the problem in the (SIP)AMPL format.

The method is select by the nsips options, and there are many other

options for each method.

The NPSOL software is used to solve the finite subproblems

(discretization and SQP methods).



HPSNO’04 - Ischia - A.I.F. Vaz, E.M.G.P. Fernandes and M.P.S.F. Gomes 3

Solver
NSIPS (Nonlinear Semi-Infinite Programming Solver)

Version 2.1 publicly available in the internet

http://www.norg.uminho.pt/aivaz/, implementing the four methods in

a total of seven algorithms.

NSIPS receives the problem in the (SIP)AMPL format.

The method is select by the nsips options, and there are many other

options for each method.

The NPSOL software is used to solve the finite subproblems

(discretization and SQP methods).

NSIPS is available in the NEOS server (www-neos.mcs.anl.gov).
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Discretization method - Three versions

A sequence of finite problems are solved. The finite problems are

obtained from the SIP problem where the infinite constraints are

evaluated at a finite set of points T̃ [hk] ⊆ T [hk], where T [hk] ⊆ T is

a uniform grid of points with space hk.

Versions adapted for nonlinear SIP and implemented:

• Hettich (1986, 1990)

• Reemtsen (1991)

• Hettich with pseudo-number generation.
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Discretization method

• Step 0: Define T [h0]. Let T̃ [h0] = T [h0]. Solve the NLP(T̃ [h0])
and let x0 be the solution found.

• Step k: If xk−1 is not feasible for all the points in the set T [hk−1]

? then: Insert all the infeasible points in the set T̃ [hk−1]. Solve

the NLP(T̃ [hk−1]) and let xk−1 be the solution found. Continue

with step k.

? else: If the maximum number of refinements is reached then

stop. Else build the set T̃ [hk] from T [hk] and T̃ [hk−1]. Solve the

NLP(T̃ [hk]) and let xk be the solution found. Go to step k + 1.
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Reduced problem

Problem with no finite constraints and only one infinite variable.

min
x∈Rn

f(x)

s.t. gi(x, t) ≤ 0, i = 1, ...,m

∀t ∈ T ≡ [a, b]

(2)
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Sequential Quadratic Programming

Considering the reduced problem (2), the sequential quadratic

programming is based on the quadratic semi-infinite programming

(QSI)

min
d∈Rn

fQ(d) =
1
2
dTHkd + dT∇f(xk)

s.t. dT∇xgi(xk, t) + gi(xk, t) ≤ 0,

i = 1, . . . ,m, ∀t ∈ [a, b] ,

where Hk is an approximation to ∇2
xxL(xk, v).
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SQP
The solution of the QSI problem is dk and

xk+1 = xk + αkdk, k = 1, 2, . . .

{xk} → x∗, solution to the initial SIP problem.

The Lagrangian of the QSI problem is

LQ(d, v) =
1
2
dTHkd + dT∇f(xk)

+
m∑

j=1

∫ b

a

(
dT∇xgj(xk, t) + gj(xk, t)

)
dvj(t)
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Solving the QSI
The dual problem minv∈V∗ L∗Q(v) ≡ −LQ(d(v), v) is solved by a

linear parametrization of the dual variables.

vj(t) =


w1j(t− a), for t ∈ [a, t1);

aij + wi+1j(t− ti), for t ∈ [ti, ti+1),

i = 1, 2, . . . , l − 1;

alj + wl+1j(t− tl), for t ∈ [tl, b] ;

j = 1, . . . ,m, where

aij =
i∑

p=1

hpj +
i∑

p=1

wpj(tp − tp−1), i = 1, . . . , l
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Example with m = 2, l = 2

a = t 0

21w

w22 = 0

23w

} h 12
h 22 0=

b = t 3
t 2t 1t 1 t

w2

h 1}

a = t 0

w11

1

1

2 b = t 3

1

2h} 1

w3

w are the linear segments slope, h are the jumps and t are the

discontinuity points.
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Merit function

φ(x, µ) = f(x) +
1
2
µ

m∑
i=1

∫ b

a

[gi(x, t)]2+dt

where [z]+ = max{0, z}.

A strategy for computing the penalty parameter.

Numerical integrals computation - Numerical adaptative formulae

(Gaussian or trapezoid).
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SQP - Dual method

1. Given x0. Let k = 0 and H0 = I.

2. Compute Hk using a BFGS quasi-Newton updating formula.

3. Solve the QSI problem to obtain the search direction dk.

4. If dk = 0 then stop.

5. Find αk such that xk+1 = xk + αkdk sufficiently decreases the

merit function.

6. If there is not a major difference between xk+1 and xk then stop

with xk+1 as an approximated solution. Otherwise do k = k + 1
and go to step 2.



HPSNO’04 - Ischia - A.I.F. Vaz, E.M.G.P. Fernandes and M.P.S.F. Gomes 13

Constraint transcription

Considering the reduced problem (2), the infinite constraints

gi(x, t) ≤ 0, ∀t ∈ T , are transformed into
∫

T
[gi(x, t)]+dt = 0 where

[z]+ = max{0, z}.

The SIP is then transformed into

min
x∈Rn

f(x)

s.t. Gi(x) ≡
∫

T

[gi(x, t)]+dt = 0

i = 1, . . . ,m

Constraint functions not differentiable.
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Approximate problem

min
x∈Rn

f(x)

s.t. Gi,ε(x) ≡
∫

T

gi,ε(x, t)dt = 0

i = 1, . . . ,m

with ε→ 0 and

gi,ε(x, t) =


0, if gi(x, t) < −ε;
(gi(x,t)+ε)2

4ε , if − ε ≤ gi(x, t) ≤ ε;

gi(x, t), if gi(x, t) > ε,

Once differentiable constraint functions.
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Penalty method

A sequence of subproblems is solved, parameterized by µ

min
x∈Rn

φS(x, µ)

for a sequence of increasing µ > 0 values.
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Simple penalty functions

φ1
S(x, µ) = f(x) + µ

m∑
i=1

∫
T

gi,ε(x, t)dt
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Simple penalty functions
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Simple penalty functions

φ1
S(x, µ) = f(x) + µ

m∑
i=1

∫
T

gi,ε(x, t)dt

φ2
S(x, µ) = f(x) +

µ

2

m∑
i=1

∫
T

gi,ε(x, t)2dt

and

φ3
S(x, µ) = f(x) + µ

m∑
i=1

∫
T

(
egi,ε(x,t) − 1

)
dt
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Relaxed problem to satisfy LICQ

min
x∈Rn

f(x)

s.t. Gi,ε(x) ≤ τ

i = 1, . . . ,m

τ > 0 (τ(ε)→ 0)
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Multiplier method

A sequence of subproblems is solved

min
x∈Rn

φAL(x, λ, µ)

where φAL is the augmented Lagrangian penalty function
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Multiplier method

A sequence of subproblems is solved

min
x∈Rn

φAL(x, λ, µ)

where φAL is the augmented Lagrangian penalty function

φAL(x, λ, µ) =f(x) +
m∑

i=1

λi

(∫
T

gi,ε(x, t)dt− τ

)

+
µ

2

m∑
i=1

(∫
T

gi,ε(x, t)dt

)2

where λ = (λ1, . . . , λm)T is the Lagrange multipliers vector.
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Lagrange multipliers update

Since the optimum Lagrange multipliers are unknown before

computing the solution, an updating formula for the Lagrange

multipliers is used.

λk+1
i = λk

i + µk

∫
T

gi,ε(xk, t)dt, i = 1, . . . ,m.
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Multiplier method
A sequence of subproblems is solved

min
x∈Rn

φE(x, λ, µ)

where φE is the exponential penalty function
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Multiplier method
A sequence of subproblems is solved

min
x∈Rn

φE(x, λ, µ)

where φE is the exponential penalty function

φE(x, λ, µ) =f(x)

+
1
µ

m∑
i=1

λi

(
eµ(

∫
T gi,ε(x,t)dt−τ) − 1

)
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Multiplier method
A sequence of subproblems is solved

min
x∈Rn

φE(x, λ, µ)

where φE is the exponential penalty function

φE(x, λ, µ) =f(x)

+
1
µ

m∑
i=1

λi

(
eµ(

∫
T gi,ε(x,t)dt−τ) − 1

)
An updating formula for the Lagrange multipliers is used

λk+1
i = λk

i e
µk(

∫
T gi,ε(x

k,t)dt−τ), i = 1, . . . ,m
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Multiplier penalty framework

1. Given an initial guess for x and λ, and parameters µ, ε and τ(ε).

2. Exterior iteration. The initial guess for the interior iterations is the

last approximation computed.

3. Interior iterations. For µ and λ, solve the unconstrained problem

min
x∈Rn

φ(x, λ, µ)

through a BFGS quasi-Newton technique and a line search with an

Armijo like rule that significantly reduces the penalty function.

Solution: x∗(µ).
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4. If the computed approximation is infeasible (
∫

T
gi,ε(x∗(µ), t)dt −

τ > 0, i = 1, ...,m) then update the penalty parameter µ, the

multipliers vector λ and proceed with another exterior iteration.

5. Otherwise, if there is a significant evolution from the last two

approximations computed for different differentiable parameters (ε

e τ(ε)) then update the differentiability parameter and proceed

with another exterior iteration.

6. Stop with the last computed approximation being an approximation

to the SIP solution (x∗← x∗(µ)).
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Primal-dual interior point method

From the relaxed problem, the barrier problem is formed by placing

the slack variables in the barrier term

min
x∈Rn,s∈Rm

f(x)− µ

m∑
i=1

log(si + τ)

s.t.

∫
T

gi,ε(x, t)dt + si = 0, i = 1, . . . ,m

with gi,ε(x, t) = gi(x,t)+
√

gi(x,t)2+ε2

2 and ε→ 0 (ε > 0).

The barrier problem is solved for a sequence of µ(→ 0) values.

By applying the Newton method to the first order KKT system:
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Newton system H 0 J

0 Λ S

−JT −I 0


∆x

∆s

∆λ

 =

σ

γ

ρ


with

H = ∇2f −
m∑

i=1

λi

∫
T

∇2
xxgi,ε(x, t)dt
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Newton system H 0 J

0 Λ S

−JT −I 0


∆x

∆s

∆λ

 =

σ

γ

ρ


with

H = ∇2f −
m∑

i=1

λi

∫
T

∇2
xxgi,ε(x, t)dt

J =
(∫

T

∇xg1,ε(x, t)dt, . . . ,

∫
T

∇xgm,ε(x, t)dt

)
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Newton system H 0 J

0 Λ S

−JT −I 0


∆x

∆s

∆λ

 =

σ

γ

ρ


with

H = ∇2f −
m∑

i=1

λi

∫
T

∇2
xxgi,ε(x, t)dt

J =
(∫

T

∇xg1,ε(x, t)dt, . . . ,

∫
T

∇xgm,ε(x, t)dt

)
S = diag(si + τ), Λ = diag(λi), i = 1, . . . ,m
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Newton system H 0 J

0 Λ S

−JT −I 0


∆x

∆s

∆λ

 =

σ

γ

ρ


with

I = Identity matrix
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Newton system H 0 J

0 Λ S

−JT −I 0


∆x

∆s

∆λ

 =

σ

γ

ρ


with

I = Identity matrix

σ = −∇f − Jλ (Dual infeasibility)
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Newton system H 0 J

0 Λ S

−JT −I 0


∆x

∆s

∆λ

 =

σ

γ

ρ


with

I = Identity matrix

σ = −∇f − Jλ (Dual infeasibility)

γ = µe− SΛe
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Newton system H 0 J

0 Λ S

−JT −I 0


∆x

∆s

∆λ

 =

σ

γ

ρ


with

I = Identity matrix

σ = −∇f − Jλ (Dual infeasibility)

γ = µe− SΛe

ρ = ḡ + s (Primal infeasibility)



HPSNO’04 - Ischia - A.I.F. Vaz, E.M.G.P. Fernandes and M.P.S.F. Gomes 25

Newton system H 0 J

0 Λ S

−JT −I 0


∆x

∆s

∆λ

 =

σ

γ

ρ


with

I = Identity matrix

σ = −∇f − Jλ (Dual infeasibility)

γ = µe− SΛe

ρ = ḡ + s (Primal infeasibility)

ḡ = (G1,ε, . . . , Gm,ε)T
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Newton system H 0 J

0 Λ S

−JT −I 0


∆x

∆s

∆λ

 =

σ

γ

ρ


(∆x,∆s,∆λ) is the Newton direction and

xk+1 = xk + αk∆xk

sk+1 = sk + αk∆sk

λk+1 = λk + αk∆λk
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Implemented merit functions

Choosing α to obtain feasibility and convergence to the minimum.

φ(x, s;µ, β) = f(x)− µ

m∑
i=1

log(si + τ) +
β

2
ρTρ
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Implemented merit functions

Choosing α to obtain feasibility and convergence to the minimum.

φ(x, s;µ, β) = f(x)− µ

m∑
i=1

log(si + τ) +
β

2
ρTρ

LA(x, s, λ;µ, β) =f(x)− µ

m∑
i=1

log(si + τ) + λTρ

+
β

2
ρTρ

Quasi-Newton strategy with an approximation to the Hessian of the

Lagrangian.
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Primal-dual interior point algorithm
1. Given x0, ε, τ , θ, δµ and δf .

2. Compute si,0 and λi,0, i = 1, . . . ,m. Let k = 0.

3. Let yeps = xk the last y computed for a given ε.

4. Compute or update µk.

5. Stopping criteria. If the stopping criteria is verified then if there

is a significant difference between yeps and xk reduce ε, τ , update

the slack variables and go to step 3; Otherwise stop.

6. Update Bk by a BFGS formula. If k = 0 then Bk =Identity matrix.
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7. Solve the KKT system to obtain the search direction

(∆xk,∆sk,∆λk).

8. Compute β and αmax.

9. Compute αk, using a strategy that significantly reduce the merit

function

10. Compute xk+1, sk+1 and λk+1.

11. Go to step 4.
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Numeric integration
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Numerical results / Conclusions
• Discretization method

? Solves all problems in the (SIP)AMPL database (over 160 prob-

lems) except problems elke2 and blankenship2/3 ;

? Solution found in the finest grid (no KKT point);

? Needs NPSOL to solve the finite subproblems.
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Numerical results / Conclusions
• Discretization method

? Solves all problems in the (SIP)AMPL database (over 160 prob-

lems) except problems elke2 and blankenship2/3 ;

? Solution found in the finest grid (no KKT point);

? Needs NPSOL to solve the finite subproblems.

• SQP method

? Solves all problems with only one infinite variable and without

finite constraints, except for the robotics problems;

? Needs NPSOL to solve the finite subproblems.
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Numerical results (cont.) / Conclusions
• Penalty method

? Solves all problems with only one infinite variable and without

finite constraints;
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Numerical results (cont.) / Conclusions
• Penalty method

? Solves all problems with only one infinite variable and without

finite constraints;

• Interior point method

? Solves 75% of problems with only one infinite variable and

without finite constraints.



HPSNO’04 - Ischia - A.I.F. Vaz, E.M.G.P. Fernandes and M.P.S.F. Gomes 33

The End
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