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Introduction

Problem formulation

The problem we are addressing is:

Problem definition
min
z∈Rn

f(z)

s.t. ` ≤ z ≤ u,

where ` ≤ z ≤ u are understood componentwise.

Smoothness
To apply particle swarm or coordinate search, smoothness of the objective
function f(z) is not required.

Assumption
For the convergence analysis of coordinate search, and therefore of the
hybrid algorithm, some smoothness of the objective function f(z) is
imposed.

Vaz, Vicente, Fernandes (Opt 2007) Global optimization in Astrophysics July 22-25, 2007 4 / 57



Introduction

Problem formulation

The problem we are addressing is:

Problem definition
min
z∈Rn

f(z)

s.t. ` ≤ z ≤ u,

where ` ≤ z ≤ u are understood componentwise.

Smoothness
To apply particle swarm or coordinate search, smoothness of the objective
function f(z) is not required.

Assumption
For the convergence analysis of coordinate search, and therefore of the
hybrid algorithm, some smoothness of the objective function f(z) is
imposed.

Vaz, Vicente, Fernandes (Opt 2007) Global optimization in Astrophysics July 22-25, 2007 4 / 57



Introduction

Problem formulation

The problem we are addressing is:

Problem definition
min
z∈Rn

f(z)

s.t. ` ≤ z ≤ u,

where ` ≤ z ≤ u are understood componentwise.

Smoothness
To apply particle swarm or coordinate search, smoothness of the objective
function f(z) is not required.

Assumption
For the convergence analysis of coordinate search, and therefore of the
hybrid algorithm, some smoothness of the objective function f(z) is
imposed.

Vaz, Vicente, Fernandes (Opt 2007) Global optimization in Astrophysics July 22-25, 2007 4 / 57



Particle swarm

Outline

1 Introduction

2 Particle swarm

3 Coordinate search

4 The hybrid algorithm

5 Numerical results with a set of test problems

6 Parameter estimation in Astrophysics

7 Conclusions and future work

Vaz, Vicente, Fernandes (Opt 2007) Global optimization in Astrophysics July 22-25, 2007 5 / 57



Particle swarm

Particle Swarm paradigm (PS)

Population based algorithms that try to mimic the social behavior of a
population (swarm) of individuals (particles).

An individual behavior is a combination of its past experience
(cognitive influence) and of the society experience (social influence).

In the optimization context, one particle p, at time instance t, is
represented by its current position (xp(t)), its best ever position
(yp(t)) and a traveling velocity (vp(t)).

Let ŷ(t) represent the best particle position of the population.
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Let ŷ(t) represent the best particle position of the population.

Vaz, Vicente, Fernandes (Opt 2007) Global optimization in Astrophysics July 22-25, 2007 6 / 57



Particle swarm

New position and velocity

The new particle position is updated by

Update particle

xp(t + 1) = xp(t) + vp(t + 1),

where vp(t + 1) is the new velocity given by

Update velocity

vp
j (t + 1) = ι(t)vp

j (t) + µω1j(t)
(
yp

j (t)− xp
j (t)
)

+ νω2j(t)
(
ŷj(t)− xp

j (t)
)

,

for j = 1, . . . , n.

ι(t) is the inertial factor
µ is the cognitive parameter and ν is the social parameter
ω1j(t) and ω2j(t) are random numbers drawn from the uniform (0, 1)
distribution.
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Particle swarm

Handling bound constraints

In particle swarm, simple bound constraints are handled by a projection
onto Ω = {x ∈ Rn : ` ≤ x ≤ u}, for all particles i = 1, . . . , s.

Projection

projΩ(xi
j(t)) =


`j if xi

j(t) < `j ,

uj if xi
j(t) > uj ,

xi
j(t) otherwise,

for j = 1, . . . , n.
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Particle swarm

Example
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Particle swarm

Example
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Particle swarm

Example
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Particle swarm

Example
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Particle swarm

Example
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Particle swarm

Example

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

iter=271, best fx=−0.0000, nfx=9756

Vaz, Vicente, Fernandes (Opt 2007) Global optimization in Astrophysics July 22-25, 2007 15 / 57



Particle swarm

Example
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Particle swarm

Example
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Particle swarm

Some properties

Easy to implement.

Easy to deal with discrete variables.

Easy to parallelize.

For a correct choice of parameters the algorithm terminates
(limt→+∞ v(t) = 0).

Uses only objective function values.

Convergence for a global optimum under strong assumptions
(unpractical).

High number of function evaluations.
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Coordinate search

Introduction to direct search methods

Direct search methods are an important class of optimization methods
that try to minimize a function by comparing objective function values
at a finite number of points.
Direct search methods do not use derivative information of the
objective function nor try to approximate it.

Coordinate search is a simple direct search method.
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Coordinate search

Some definitions

Positive maximal basis
Formed by the coordinate vectors and their negative counterparts:

D⊕ = {e1, . . . , en,−e1, . . . ,−en}.

D⊕ spans Rn with nonnegative coefficients.

Coordinate search
The direct search method based on D⊕ is known as coordinate or compass
search.
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Coordinate search

Some definitions

Sets
Given D⊕ and the current point y(t), two sets of points are defined: a grid
Mt and the poll set Pt.
The grid Mt is given by

Mt =
{

y(t) + α(t)D⊕z, z ∈ N|D⊕|0

}
,

where α(t) > 0 is the grid size parameter.
The poll set is given by

Pt = {y(t) + α(t)d, d ∈ D⊕} .
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Coordinate search

Example of Mt and Pt

y(t)
y(t)+α(t)e

1

y(t)+α(t)e
2

y(t)−α(t)e
1

y(t)−α(t)e
2

The grid Mt

and the set Pt

when D⊕ =
{e1, e2,−e1,−e2}
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Coordinate search

Coordinate search

The search step conducts a finite search on the grid Mt.

If no success is obtained in the search step then a poll step follows.

The poll step evaluates the objective function at the elements of Pt,
searching for points which have a lower objective function value.

If success is attained, the value of α(t) may be increased, otherwise it
is reduced.

Vaz, Vicente, Fernandes (Opt 2007) Global optimization in Astrophysics July 22-25, 2007 24 / 57



Coordinate search

Coordinate search

The search step conducts a finite search on the grid Mt.

If no success is obtained in the search step then a poll step follows.

The poll step evaluates the objective function at the elements of Pt,
searching for points which have a lower objective function value.

If success is attained, the value of α(t) may be increased, otherwise it
is reduced.

Vaz, Vicente, Fernandes (Opt 2007) Global optimization in Astrophysics July 22-25, 2007 24 / 57



Coordinate search

Coordinate search

The search step conducts a finite search on the grid Mt.

If no success is obtained in the search step then a poll step follows.

The poll step evaluates the objective function at the elements of Pt,
searching for points which have a lower objective function value.

If success is attained, the value of α(t) may be increased, otherwise it
is reduced.

Vaz, Vicente, Fernandes (Opt 2007) Global optimization in Astrophysics July 22-25, 2007 24 / 57



Coordinate search

Coordinate search

The search step conducts a finite search on the grid Mt.

If no success is obtained in the search step then a poll step follows.

The poll step evaluates the objective function at the elements of Pt,
searching for points which have a lower objective function value.

If success is attained, the value of α(t) may be increased, otherwise it
is reduced.

Vaz, Vicente, Fernandes (Opt 2007) Global optimization in Astrophysics July 22-25, 2007 24 / 57



Coordinate search

Handling bound constraints

For the coordinate search method it is sufficient to initialize the algorithm
with a feasible initial guess (y(0) ∈ Ω) and to use f̂ as the objective
function.

Penalty/Barrier function

f̂(z) =
{

f(z) if z ∈ Ω,
+∞ otherwise.
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The hybrid algorithm

Motivation for PSwarm

Hybrid algorithm
The hybrid algorithm tries to combine the best of both algorithms.

From particle swarm
The particle swarm ability of searching for the global optimum.

From coordinate search
The guarantee to obtain at least a stationary point. Some robustness.
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The hybrid algorithm

Motivation for PSwarm

Central idea
A particle swarm iteration is performed in the search step and if no progress
is attained a poll step is taken.

Key points
In the first iterations the algorithm takes advantage of the particle
swarm ability to find a global optimum (exploiting the search space),
while in the last iterations the algorithm takes advantage of the
pattern search robustness to find a stationary point.
The number of particles in the swarm search can be decreased along
the iterations (no need to have a large number of particles around a
local optimum).
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The hybrid algorithm

Example
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The hybrid algorithm

Example
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Numerical results with a set of test problems

Outline
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Numerical results with a set of test problems

Test problems

122 problems were collected from the global optimization literature.

12 problems of large dimension (between 100 and 300 variables). The
others are small (< 10) and medium size (< 30).

Majority of objective functions are differentiable, but non-convex.

All problems have simple bounds on the variables (needed for the
search step — particle swarm).

The test problems were coded in AMPL (A Modeling Language for
Mathematical Programming).

Test problems available on http://www.norg.uminho.pt/aivaz
(under software).
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Numerical results with a set of test problems

Average objective value
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Numerical results with a set of test problems

Average of objective function evaluations
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Numerical results with a set of test problems

Average number of objective function evaluations

maxf ASA PGAPack PSwarm Direct MCS
1000 857 1009∗ 686 1107∗ 1837∗

10000 5047 10009∗ 3603 11517∗ 4469
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Numerical results with a set of test problems

Coordinate search vs Particle swarm vs PSwarm
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Parameter estimation in Astrophysics
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Parameter estimation in Astrophysics

The problem

Objective

To determine a set of stellar parameters (that define the star internal
structure and evolution) from observable information.

Set of parameters to be determined

M — stellar mass (relative to Sun mass M�).
X — abundance of hydrogen (%).
Y — abundance of helium (%).
Z — abundance of other elements (Z = 100%−X − Y ).
t — star age (in Gyr = 1000 million years).
two other parameters.
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Parameter estimation in Astrophysics

The problem

Observable data from spectrum analysis
teff — stellar surface temperature.
lum — total stellar luminosity.(

Z
X

)
— relation between the abundance of other elements and

hydrogen.
g — surface gravity (less accurate).

Parameters and observable data for Sun
M = 1 and t = 4.6Gyr, with teff = 5777, lum = 1 and Z/X = 0.0245.

This information is only available for Sun.
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Parameter estimation in Astrophysics

The optimization problem

The optimization problem

min
M,t,X,Y

(
teff − teff,obs

δteff,obs

)2

+
(

lum− lumobs

δlumobs

)2

+

(
1−X−Y

X −
(

Z
X

)
obs

δ
(

Z
X

)
obs

)2

+
(

g − gobs

δgobs

)2

Given M , t and fixing X, Y (α and ov) the parameters teff , lum and g
are computed by simulating (CESAM code) a system of differentiable
equations.

The equations of internal structure are five: conservation of mass and
energy, hydrostatic equilibrium, energy transport, production and
destruction of chemical elements by thermonuclear reactions.
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Parameter estimation in Astrophysics

Numerical results

Getting teff , lum and g – CESAM

teff , lum and g are computed by CESAM (Fortran 77 code), which is
viewed as a black box function for the optimization process.

Optimization solver – PSwarm

PSwarm (C code).
Solver used with default options.

Linking PSwarm and CESAM
Optimization solver communicates with CESAM by input and output files.
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Parameter estimation in Astrophysics

Numerical results

Parallel approach
Each objective function evaluation takes around 1 minute to compute
(on a desktop computer). One day for a full algorithm run (serial).
We tested 5 fake stars (in order to validate the approach) and 10 real
stars.
For each star we performed 28 runs. (28*15=420 days!).
A parallel version was implemented using MPI-2. The Centopeia
(University of Coimbra) and SeARCH (University of Minho) parallel
platforms were used to obtain the numerical results.
About one day for 10 runs (parallel in 8 processors) — 42 particles
with a maximum of 2000 o.f. evaluations.
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Parameter estimation in Astrophysics

Numerical results

Average obtained results (in Red) vs the real data.
Star M t (Myr) X Y α ov o.f. (average)
Sun 1.00 4600 0.715 0.268 1.63 0.00
Sun 0.96 4691 0.68 0.31 1.55 0.265 0.272511931
fake1 0.85 1600 0.70 0.29 1.9 0.0
fake1 0.84 2989 0.69 0.30 2.0 0.36 0.846046483
fake2 1.30 850 0.72 0.25 1.0 0.25
fake2 1.20 4403 0.70 0.27 1.27 0.33 0.250562107
fake3 1.00 5000 0.68 0.30 0.7 0.15
fake3 1.00 5499 0.68 0.30 0.72 0.28 0.209947500
fake4 0.70 5000 0.66 0.33 2.0 0.0
fake4 0.71 3786 0.66 0.33 2.0 0.26 0.040181857
fake5 1.10 2500 0.62 0.36 1.4 0.3
fake5 1.10 2956 0.62 0.36 1.57 0.22 0.232024714
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Parameter estimation in Astrophysics

Numerical results

Average obtained results for real stars.
Star M t (Myr) X Y α ov o.f. (average)
hd10002 0.87 5455 0.62 0.35 1.39 0.22 0.454073286
hd11226 1.12 3524 0.67 0.30 1.63 0.29 1.449135786
hd19994 1.28 2539 0.63 0.34 1.37 0.22 1.242964393
hd30177 1.02 5381 0.62 0.34 1.48 0.23 0.215747107
hd39833 1.24 1787 0.74 0.23 2.18 0.36 4.535001821
hd40979 1.08 3286 0.63 0.35 1.76 0.26 0.083869821
hd72659 1.18 4064 0.71 0.27 1.47 0.28 0.905840517
hd74868 1.26 2081 0.64 0.33 1.74 0.28 0.310089143
hd76700 1.15 4964 0.64 0.32 1.64 0.28 0.303584679
hd117618 1.09 4248 0.69 0.29 1.72 0.30 0.581501536
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Parameter estimation in Astrophysics

HR diagram with hd10002
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Parameter estimation in Astrophysics

HR diagram with hd39833
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Conclusions and future work

Conclusions

Conclusions
Development of a hybrid algorithm for derivative-free global
optimization.

PSwarm (C code) shown to be a robust and competitive solver (both
serial and parallel versions). A MATLAB version is also available at
www.norg.uminho.pt/aivaz/pswarm

Parameters in astrophysics well estimated by PSwarm.

This is the first time a six simultaneous stellar parameters estimation
is performed.
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Conclusions and future work

Future work

We already have a PSwarm MATLAB version that handles linear
constraints (not publicly available yet).

Extend PSwarm to more general constrained optimization problems.

To apply this technique to a large sample (∼100-150) of planet host
solar-type stars in order to constrain the stellar evolution and planet
formation theories.
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The end

The end

email: aivaz@dps.uminho.pt
Web http://www.norg.uminho.pt/aivaz

email: lnv@mat.uc.pt
Web http://www.mat.uc.pt/∼lnv

email: jmfernan@mat.uc.pt
Web: http://www.mat.uc.pt/∼jmfernan

Vaz, Vicente, Fernandes (Opt 2007) Global optimization in Astrophysics July 22-25, 2007 57 / 57


	Outline
	Introduction
	Particle swarm
	Coordinate search
	The hybrid algorithm
	Numerical results with a set of test problems
	Parameter estimation in Astrophysics
	Conclusions and future work
	The end

