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Introduction Notation

Problem formulation

The problem we are addressing is:

Problem definition
min
z∈Rn

f(z)

s.t. ` ≤ z ≤ u,

where ` ≤ z ≤ u are understood componentwise.

Smoothness
To apply particle swarm or coordinate search, smoothness of the objective
function f(z) is not required.

Assumption
For the convergence analysis of coordinate search, and therefore of the
hybrid algorithm, some smoothness of the objective function f(z) is
imposed.
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Particle swarm The paradigm

Particle Swarm paradigm (PS)

Population based algorithms that try to mimic the social behavior of a
population (swarm) of individuals (particles).

An individual behavior is a combination of its past experience
(cognitive influence) and of the society experience (social influence).

In the optimization context, one particle p, at time instance t, is
represented by its current position (xp(t)), its best ever position
(yp(t)) and a traveling velocity (vp(t)).

Let ŷ(t) represent the best particle position of the population.
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Let ŷ(t) represent the best particle position of the population.

Ismael Vaz (UMinho - PT) Direct search and Astrophysics 12 November 2007 6 / 72



Particle swarm Definitions

New position and velocity

The new particle position is updated by

Update particle

xp(t + 1) = xp(t) + vp(t + 1),

where vp(t + 1) is the new velocity given by

Update velocity

vp
j (t + 1) = ι(t)vp

j (t) + µω1j(t)
(
yp

j (t)− xp
j (t)
)

+ νω2j(t)
(
ŷj(t)− xp

j (t)
)

,

for j = 1, . . . , n.

ι(t) is the inertial factor
µ is the cognitive parameter and ν is the social parameter
ω1j(t) and ω2j(t) are random numbers drawn from the uniform (0, 1)
distribution.
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ŷj(t)− xp

j (t)
)

,

for j = 1, . . . , n.

ι(t) is the inertial factor
µ is the cognitive parameter and ν is the social parameter
ω1j(t) and ω2j(t) are random numbers drawn from the uniform (0, 1)
distribution.

Ismael Vaz (UMinho - PT) Direct search and Astrophysics 12 November 2007 7 / 72



Particle swarm Definitions

New position and velocity

The new particle position is updated by

Update particle

xp(t + 1) = xp(t) + vp(t + 1),

where vp(t + 1) is the new velocity given by

Update velocity

vp
j (t + 1) = ι(t)vp

j (t) + µω1j(t)
(
yp

j (t)− xp
j (t)
)

+ νω2j(t)
(
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Particle swarm Definitions

The best ever particle

ŷ(t) is a particle position with global best function value so far, i.e.,

Best position

ŷ(t) ∈ arg min
a∈A

ḡ(a)

A =
{
y1(t), . . . , ys(t)

}
.

where s is the number of particles in the swarm.

Note
In an algorithmic point of view we just have to keep track of the particle
with the best ever function value.
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Particle swarm Definitions

Handling bound constraints

In particle swarm, simple bound constraints are handled by a projection
onto Ω = {x ∈ Rn : ` ≤ x ≤ u}, for all particles i = 1, . . . , s.

Projection

projΩ(xi
j(t)) =


`j if xi

j(t) < `j ,

uj if xi
j(t) > uj ,

xi
j(t) otherwise,

for j = 1, . . . , n.
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Particle swarm Particle swarm algorithm

The algorithm

1 Given s and vtol > 0. Let
{
x1(0), . . . , xs(0)

}
and {v1(0), . . . , vs(0)}.

2 yi(0) = xi(0), i = 1, . . . , s, and ŷ(0) = arg minz∈{y1(0),...,ys(0)} f(z).
t = 0.

3 ŷ(t + 1) = ŷ(t).
For i = 1, . . . , s do:

x̂i(t) = projΩ(xi(t)).
If f(x̂i(t)) < f(yi(t)) then

yi(t + 1) = x̂i(t).
If f(yi(t + 1)) < f(ŷ(t + 1)) then ŷ(t + 1) = yi(t + 1).

Otherwise yi(t + 1) = yi(t).
4 Compute vi(t + 1) e xi(t + 1), i = 1, . . . , s.
5 If ‖vi(t + 1)‖ < vtol, ∀i = 1, . . . , s, then stop. Otherwise set t = t + 1

and goto Step 3.
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Otherwise yi(t + 1) = yi(t).
4 Compute vi(t + 1) e xi(t + 1), i = 1, . . . , s.
5 If ‖vi(t + 1)‖ < vtol, ∀i = 1, . . . , s, then stop. Otherwise set t = t + 1

and goto Step 3.

Ismael Vaz (UMinho - PT) Direct search and Astrophysics 12 November 2007 10 / 72



Particle swarm Particle swarm algorithm

The algorithm

1 Given s and vtol > 0. Let
{
x1(0), . . . , xs(0)

}
and {v1(0), . . . , vs(0)}.

2 yi(0) = xi(0), i = 1, . . . , s, and ŷ(0) = arg minz∈{y1(0),...,ys(0)} f(z).
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3 ŷ(t + 1) = ŷ(t).
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For i = 1, . . . , s do:

x̂i(t) = projΩ(xi(t)).
If f(x̂i(t)) < f(yi(t)) then

yi(t + 1) = x̂i(t).
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Particle swarm Particle swarm algorithm

Example
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Example
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Particle swarm Particle swarm algorithm

Example
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Example
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Example
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Particle swarm Particle swarm algorithm

Example
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Particle swarm Particle swarm algorithm

Example
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Particle swarm Particle swarm algorithm

Example
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Particle swarm Particle swarm algorithm

Example
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Particle swarm Properties

Some properties

Easy to implement.

Easy to deal with discrete variables.

Easy to parallelize.

For a correct choice of parameters the algorithm terminates
(limt→+∞ v(t) = 0).

Uses only objective function values.

Convergence for a global optimum under strong assumptions
(unpractical).

High number of function evaluations.
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Coordinate search

Outline
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5 Numerical results with a set of test problems
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Coordinate search Introduction

Introduction to direct search methods

Direct search methods are an important class of optimization methods
that try to minimize a function by comparing objective function values
at a finite number of points.
Direct search methods do not use derivative information of the
objective function nor try to approximate it.

Coordinate search is a simple direct search method.
One of the most important definitions in coordinate search is positive
spanning sets.
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Coordinate search Spanning sets

Positive spanning sets

What is a (positive) spanning set for Rn?

Is a set of vector that generate all the space (Rn), i.e., all the point in the
space are a linear combination (with nonnegative coefficients) of the vector
in the set.

Example for R2 〈(
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Coordinate search Spanning sets

Type of basis

Minimal basis
with n + 1 vectors
(3 in the R2 case).

Maximal basis
with 2n vectors

(4 in the R2 case).
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Coordinate search Definitions

Some definitions

Positive maximal basis
Formed by the coordinate vectors and their negative counterparts:

D⊕ = {e1, . . . , en,−e1, . . . ,−en}.

D⊕ spans Rn with nonnegative coefficients.

Coordinate search
The direct search method based on D⊕ is known as coordinate or compass
search.
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Coordinate search Definitions

Some definitions

Sets
Given D⊕ and the current point y(t), two sets of points are defined: a grid
Mt and the poll set Pt.
The grid Mt is given by

Mt =
{

y(t) + α(t)D⊕z, z ∈ N|D⊕|0

}
,

where α(t) > 0 is the grid size parameter.
The poll set is given by

Pt = {y(t) + α(t)d, d ∈ D⊕} .
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Coordinate search Definitions

Example of Mt and Pt

y(t)
y(t)+α(t)e

1

y(t)+α(t)e
2

y(t)−α(t)e
1

y(t)−α(t)e
2

The grid Mt

and the set Pt

when D⊕ =
{e1, e2,−e1,−e2}
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Coordinate search Coordinate search

Coordinate search

The search step conducts a finite search on the grid Mt.

If no success is obtained in the search step then a poll step follows.

The poll step evaluates the objective function at the elements of Pt,
searching for points which have a lower objective function value.

If success is attained, the value of α(t) may be increased, otherwise it
is reduced.
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Coordinate search Coordinate search

Handling bound constraints

For the coordinate search method it is sufficient to initialize the algorithm
with a feasible initial guess (y(0) ∈ Ω) and to use f̂ as the objective
function.

Penalty/Barrier function

f̂(z) =
{

f(z) if z ∈ Ω,
+∞ otherwise.
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Coordinate search Coordinate search

Example (without search step)
α=0.5
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Coordinate search Coordinate search

Example (without search step)
α=0.25
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Coordinate search Coordinate search

Example (without search step)
α=0.125
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Coordinate search Coordinate search algorithm

The algorithm

1 Given αtol > 0, D = D⊕, α(0) > 0 e y(0) (feasible). t = 0.

2 [Search step]
Compute f at a finite set of points in the grid Mt. If there is a
z(t) ∈ Mt such that f̂(z(t)) < f̂(y(t)) then set y(t + 1) = z(t),
α(t + 1) = φ(t)α(t) (expansion — success).

3 [Poll step]
The poll step is skipped with the search step was successful.

If there exists d(t) ∈ D such that f̂(y(t) + α(t)d(t)) < f̂(y(t)) then

y(t + 1) = y(t) + α(t)d(t) (success).
α(t + 1) = φ(t)α(t) (expansion).

Otherwise, f̂(y(t) + α(t)d(t)) ≥ f̂(y(t)) for all d(t) ∈ D and

y(t + 1) = y(t) (unsuccessful).
α(t + 1) = θ(t)α(t) (contraction).

4 If α(t + 1) < αtol then stop. Otherwise, t = t + 1 and go to Step 2.
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The hybrid algorithm Motivation

Motivation

Hybrid algorithm
The hybrid algorithm tries to combine the best of both algorithms.

From particle swarm
The particle swarm ability of searching for the global optimum.

From coordinate search
The guarantee to obtain at least a stationary point. Some robustness.

Central idea
To apply the particle swarm algorithm in the search step and when no
further success is possible to apply the poll step.
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Key points
In the first iterations the algorithm takes advantage of the particle
swarm ability to find a global optimum (exploiting the search space),
while in the last iterations the algorithm takes advantage of the
pattern search robustness to find a stationary point.
The number of particles in the swarm search can be decreased along
the iterations (no need to have a large number of particles around a
local optimum).
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The hybrid algorithm Hybrid algorithm

The hybrid algorithm

1 Given αtol > 0, D = D⊕, α(0) > 0, s, vtol > 0. Set{
x1(0), . . . , xs(0)

}
and {v1(0), . . . , vs(0)}. t = 0.

2 yi(0) = xi(0), i = 1, . . . , s, e ŷ(0) = arg minz∈{y1(0),...,ys(0)} f(z).
3 [Search step]

ŷ(t + 1) = ŷ(t).
For i = 1, . . . , s do:

x̂i(t) = projMt(x
i(t)).

If f̂(x̂i(t)) < f̂(yi(t)) then
yi(t + 1) = x̂i(t).
f(yi(t + 1)) < f(ŷ(t + 1)) then
ŷ(t + 1) = yi(t + 1) (success).
α(t + 1) = φ(t)α(t) (expansion).

Otherwise yi(t + 1) = yi(t).
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ŷ(t + 1) = ŷ(t).
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The hybrid algorithm Hybrid algorithm

The hybrid algorithm

4. [Poll Step]
The poll step is skipped with the search step was successful.

If there exists d(t) ∈ D such that f̂(ŷ(t) + α(t)d(t)) < f̂(ŷ(t)) then
ŷ(t + 1) = ŷ(t) + α(t)d(t) (success).
α(t + 1) = φ(t)α(t) (expansion).

Otherwise, f̂(ŷ(t) + α(t)d(t)) ≥ f̂(ŷ(t)) para todo o d(t) ∈ D, and
ŷ(t + 1) = ŷ(t) (unsuccessful).
α(t + 1) = θ(t)α(t) (contraction).

5. Compute vi(t + 1) and xi(t + 1), i = 1, . . . , s.
6. If α(t + 1) < αtol and ‖vi(t + 1)‖ < vtol, for all i = 1, . . . , s, then

stop. Otherwise, t = t + 1 and go to Step 3.
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ŷ(t + 1) = ŷ(t) (unsuccessful).
α(t + 1) = θ(t)α(t) (contraction).

5. Compute vi(t + 1) and xi(t + 1), i = 1, . . . , s.
6. If α(t + 1) < αtol and ‖vi(t + 1)‖ < vtol, for all i = 1, . . . , s, then

stop. Otherwise, t = t + 1 and go to Step 3.

Ismael Vaz (UMinho - PT) Direct search and Astrophysics 12 November 2007 40 / 72



The hybrid algorithm Hybrid algorithm

Example
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iter=1, best fx=12.3615, pollsteps=0, suc=0, delta=0.81920000 nfx=20
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Example
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Example
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The hybrid algorithm Hybrid algorithm

Example
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The hybrid algorithm Hybrid algorithm

Example

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

iter=511, best fx=0.0264, pollsteps=211, suc=149, delta=0.40960000 nfx=1206

Ismael Vaz (UMinho - PT) Direct search and Astrophysics 12 November 2007 48 / 72



The hybrid algorithm Hybrid algorithm

Example
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The hybrid algorithm Convergence

Global convergence

Theorem
Let L(ŷ(0)) = {z ∈ Rn : f(z) ≤ f(ŷ(0))} be a bounded set. Then, there
exists a subsequence {ŷ(tk)} of the iterates produced by the hybrid
algorithm (with αtol = vtol = 0) such that

lim
k−→+∞

ŷ(tk) = ŷ∗ and lim
k−→+∞

α(tk) = 0,

for some ŷ∗ ∈ Ω and such that the subsequence {tk} consists of
unsuccessful iterations.
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The hybrid algorithm Convergence

Finite termination

Theorem

Suppose that for t sufficiently large one has that ι(t), E(yi(t)),
i = 1, . . . , s, and E(ŷ(t)) are constant and that
E(projMt(xi(t− 1) + vi(t))) = E(xi(t− 1) + vi(t)), i = 1, . . . , s. Then,
for an appropriate choice of the control parameters for particle swarm,

lim
t−→+∞

E(vi
j(t)) = 0, i = 1, . . . , s, j = 1, . . . , n.

and the hybrid algorithm will stop almost surely in a finite number of
iterations.
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The hybrid algorithm Convergence

Some considerations

Being the level set L(y(0)) bounded the strict decreasing sequences
{f(yi(t))}, i = 1, . . . , s, and {f(ŷ(t))} converge. Thus, it is reasonable to
suppose that the expected values of yi(t), i = 1, . . . , s, and ŷ(t) also
converge.

On the other hand, the difference between projMt(xi(t− 1) + vi(t)) and
xi(t− 1) + vi(t) — and thus between their expected values — is a multiple
of α(t) for some choices of D. This situation occurs in coordinate search,
where D = D⊕. Since there is a subsequence of the mesh size parameters
that converges to zero, there is at least the guarantee that the expected
difference between xi(t− 1) + vi(t) and its projection onto Mt converges
to zero in that subsequence.
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Numerical results with a set of test problems Test problems

Test problems

122 problems were collected from the global optimization literature.

12 problems of large dimension (between 100 and 300 variables). The
others are small (< 10) and medium size (< 30).

Majority of objective functions are differentiable, but non-convex.

All problems have simple bounds on the variables (needed for the
search step — particle swarm).

The test problems were coded in AMPL (A Modeling Language for
Mathematical Programming).

Test problems available on http://www.norg.uminho.pt/aivaz
(under software).
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Numerical results with a set of test problems Numerical results

Average objective value
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Average of objective function evaluations
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Numerical results with a set of test problems Numerical results

Average number of objective function evaluations

maxf ASA PGAPack PSwarm Direct MCS
1000 857 1009∗ 686 1107∗ 1837∗

10000 5047 10009∗ 3603 11517∗ 4469

Ismael Vaz (UMinho - PT) Direct search and Astrophysics 12 November 2007 57 / 72



Numerical results with a set of test problems Numerical results

Coordinate search vs Particle swarm vs PSwarm
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Parameter estimation in Astrophysics
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Parameter estimation in Astrophysics Definitions

The problem

Objective

To determine a set of stellar parameters (that define the star internal
structure and evolution) from observable information.

Set of parameters to be determined

M — stellar mass (relative to Sun mass M�).
X — abundance of hydrogen (%).
Y — abundance of helium (%).
Z — abundance of other elements (Z = 100%−X − Y ).
t — star age (in Gyr = 1000 million years).
two other parameters.
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Parameter estimation in Astrophysics Definitions

The problem

Observable data from spectrum analysis
teff — stellar surface temperature.
lum — total stellar luminosity.(

Z
X

)
— relation between the abundance of other elements and

hydrogen.
g — surface gravity (less accurate).

Parameters and observable data for Sun
M = 1 and t = 4.6Gyr, with teff = 5777, lum = 1 and Z/X = 0.0245.

This information is only available for Sun.

Ismael Vaz (UMinho - PT) Direct search and Astrophysics 12 November 2007 61 / 72



Parameter estimation in Astrophysics Definitions

The problem

Observable data from spectrum analysis
teff — stellar surface temperature.
lum — total stellar luminosity.(

Z
X

)
— relation between the abundance of other elements and

hydrogen.
g — surface gravity (less accurate).

Parameters and observable data for Sun
M = 1 and t = 4.6Gyr, with teff = 5777, lum = 1 and Z/X = 0.0245.

This information is only available for Sun.

Ismael Vaz (UMinho - PT) Direct search and Astrophysics 12 November 2007 61 / 72



Parameter estimation in Astrophysics Definitions

The problem

Observable data from spectrum analysis
teff — stellar surface temperature.
lum — total stellar luminosity.(

Z
X

)
— relation between the abundance of other elements and

hydrogen.
g — surface gravity (less accurate).

Parameters and observable data for Sun
M = 1 and t = 4.6Gyr, with teff = 5777, lum = 1 and Z/X = 0.0245.

This information is only available for Sun.

Ismael Vaz (UMinho - PT) Direct search and Astrophysics 12 November 2007 61 / 72



Parameter estimation in Astrophysics Definitions

The problem

Observable data from spectrum analysis
teff — stellar surface temperature.
lum — total stellar luminosity.(

Z
X

)
— relation between the abundance of other elements and

hydrogen.
g — surface gravity (less accurate).

Parameters and observable data for Sun
M = 1 and t = 4.6Gyr, with teff = 5777, lum = 1 and Z/X = 0.0245.

This information is only available for Sun.

Ismael Vaz (UMinho - PT) Direct search and Astrophysics 12 November 2007 61 / 72



Parameter estimation in Astrophysics Definitions

The problem

Observable data from spectrum analysis
teff — stellar surface temperature.
lum — total stellar luminosity.(

Z
X

)
— relation between the abundance of other elements and

hydrogen.
g — surface gravity (less accurate).

Parameters and observable data for Sun
M = 1 and t = 4.6Gyr, with teff = 5777, lum = 1 and Z/X = 0.0245.

This information is only available for Sun.

Ismael Vaz (UMinho - PT) Direct search and Astrophysics 12 November 2007 61 / 72



Parameter estimation in Astrophysics Definitions

The problem

Observable data from spectrum analysis
teff — stellar surface temperature.
lum — total stellar luminosity.(

Z
X

)
— relation between the abundance of other elements and

hydrogen.
g — surface gravity (less accurate).

Parameters and observable data for Sun
M = 1 and t = 4.6Gyr, with teff = 5777, lum = 1 and Z/X = 0.0245.

This information is only available for Sun.

Ismael Vaz (UMinho - PT) Direct search and Astrophysics 12 November 2007 61 / 72



Parameter estimation in Astrophysics The optimization problem

The optimization problem

The optimization problem

min
M,t,X,Y

(
teff − teff,obs

δteff,obs

)2

+
(

lum− lumobs

δlumobs

)2

+

(
1−X−Y

X −
(

Z
X

)
obs

δ
(

Z
X

)
obs

)2

+
(

g − gobs

δgobs

)2

Given M , t, fixing X, Y , and the two other parameters the parameters
teff , lum and g are computed by simulating (CESAM code) a system of
differentiable equations.

The equations of internal structure are five: conservation of mass and
energy, hydrostatic equilibrium, energy transport, production and
destruction of chemical elements by thermonuclear reactions.
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Parameter estimation in Astrophysics Numerical results

Numerical results

Getting teff , lum and g – CESAM

teff , lum and g are computed by CESAM (Fortran 77 code), which is
viewed as a black box function for the optimization process.

Optimization solver – PSwarm

PSwarm (C code).
Solver used with default options.

Linking PSwarm and CESAM
Optimization solver communicates with CESAM by input and output files.
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Parameter estimation in Astrophysics Numerical results

Numerical results - DH37124 star
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 Number of objective function evaluations

 ln
(f

(x
))

f(ŷ(1)) ≈ 7960,

f(ŷ(100)) ≈ 0.86,

18 hours and 54 minutes
real time (68070s),

The CESAM call for the
solution takes (printing
to terminal)

real 1m28.359s
user 40.811s
sys 0.718s

Solution: M = 0.81, t = 5.48, X = 0.66, Y = 0.33, a = 0.81, ov = 0.48
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Parameter estimation in Astrophysics Numerical results

Numerical results - HD46375 star
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 Number of objective function evaluations

 ln
(f

(x
))

f(ŷ(1)) ≈ 167,

f(ŷ(100)) ≈ 0.16,

21 hours and 54 minutes
real time (78839s),

The CESAM call for the
solution takes (printing
to terminal)

real 39.605s
user 37.719s
sys 0.450s

Solution: M = 0.93, t = 4.87, X = 0.62, Y = 0.35, a = 1.08, ov = 0.50
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Parameter estimation in Astrophysics Numerical results

Numerical results

Parallel approach
Each objective function evaluation takes around 1 minute to compute
(on a desktop computer). One day for a full algorithm run (serial).
We tested 5 fake stars (in order to validate the approach) and 10 real
stars.
For each star we performed 28 runs. (28*15=420 days!).
A parallel version was implemented using MPI-2. The Centopeia
(University of Coimbra) and SeARCH (University of Minho) parallel
platforms were used to obtain the numerical results.
About one day for 10 runs (parallel in 8 processors) — 42 particles
with a maximum of 2000 o.f. evaluations.

Ismael Vaz (UMinho - PT) Direct search and Astrophysics 12 November 2007 66 / 72



Parameter estimation in Astrophysics Numerical results

Numerical results

Parallel approach
Each objective function evaluation takes around 1 minute to compute
(on a desktop computer). One day for a full algorithm run (serial).
We tested 5 fake stars (in order to validate the approach) and 10 real
stars.
For each star we performed 28 runs. (28*15=420 days!).
A parallel version was implemented using MPI-2. The Centopeia
(University of Coimbra) and SeARCH (University of Minho) parallel
platforms were used to obtain the numerical results.
About one day for 10 runs (parallel in 8 processors) — 42 particles
with a maximum of 2000 o.f. evaluations.

Ismael Vaz (UMinho - PT) Direct search and Astrophysics 12 November 2007 66 / 72



Parameter estimation in Astrophysics Numerical results

Numerical results

Parallel approach
Each objective function evaluation takes around 1 minute to compute
(on a desktop computer). One day for a full algorithm run (serial).
We tested 5 fake stars (in order to validate the approach) and 10 real
stars.
For each star we performed 28 runs. (28*15=420 days!).
A parallel version was implemented using MPI-2. The Centopeia
(University of Coimbra) and SeARCH (University of Minho) parallel
platforms were used to obtain the numerical results.
About one day for 10 runs (parallel in 8 processors) — 42 particles
with a maximum of 2000 o.f. evaluations.

Ismael Vaz (UMinho - PT) Direct search and Astrophysics 12 November 2007 66 / 72



Parameter estimation in Astrophysics Numerical results

Numerical results

Parallel approach
Each objective function evaluation takes around 1 minute to compute
(on a desktop computer). One day for a full algorithm run (serial).
We tested 5 fake stars (in order to validate the approach) and 10 real
stars.
For each star we performed 28 runs. (28*15=420 days!).
A parallel version was implemented using MPI-2. The Centopeia
(University of Coimbra) and SeARCH (University of Minho) parallel
platforms were used to obtain the numerical results.
About one day for 10 runs (parallel in 8 processors) — 42 particles
with a maximum of 2000 o.f. evaluations.

Ismael Vaz (UMinho - PT) Direct search and Astrophysics 12 November 2007 66 / 72



Parameter estimation in Astrophysics Numerical results

Numerical results

Parallel approach
Each objective function evaluation takes around 1 minute to compute
(on a desktop computer). One day for a full algorithm run (serial).
We tested 5 fake stars (in order to validate the approach) and 10 real
stars.
For each star we performed 28 runs. (28*15=420 days!).
A parallel version was implemented using MPI-2. The Centopeia
(University of Coimbra) and SeARCH (University of Minho) parallel
platforms were used to obtain the numerical results.
About one day for 10 runs (parallel in 8 processors) — 42 particles
with a maximum of 2000 o.f. evaluations.

Ismael Vaz (UMinho - PT) Direct search and Astrophysics 12 November 2007 66 / 72



Parameter estimation in Astrophysics Numerical results

Numerical results

Parallel approach
Each objective function evaluation takes around 1 minute to compute
(on a desktop computer). One day for a full algorithm run (serial).
We tested 5 fake stars (in order to validate the approach) and 10 real
stars.
For each star we performed 28 runs. (28*15=420 days!).
A parallel version was implemented using MPI-2. The Centopeia
(University of Coimbra) and SeARCH (University of Minho) parallel
platforms were used to obtain the numerical results.
About one day for 10 runs (parallel in 8 processors) — 42 particles
with a maximum of 2000 o.f. evaluations.

Ismael Vaz (UMinho - PT) Direct search and Astrophysics 12 November 2007 66 / 72



Parameter estimation in Astrophysics Numerical results

Numerical results

Average obtained results (in Red) vs the real data.
Star M t (Myr) X Y α ov o.f. (average)
Sun 1.00 4600 0.715 0.268 1.63 0.00
Sun 0.96 4691 0.68 0.31 1.55 0.265 0.272511931
fake1 0.85 1600 0.70 0.29 1.9 0.0
fake1 0.84 2989 0.69 0.30 2.0 0.36 0.846046483
fake2 1.30 850 0.72 0.25 1.0 0.25
fake2 1.20 4403 0.70 0.27 1.27 0.33 0.250562107
fake3 1.00 5000 0.68 0.30 0.7 0.15
fake3 1.00 5499 0.68 0.30 0.72 0.28 0.209947500
fake4 0.70 5000 0.66 0.33 2.0 0.0
fake4 0.71 3786 0.66 0.33 2.0 0.26 0.040181857
fake5 1.10 2500 0.62 0.36 1.4 0.3
fake5 1.10 2956 0.62 0.36 1.57 0.22 0.232024714
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Parameter estimation in Astrophysics Numerical results

Numerical results

Average obtained results for real stars.
Star M t (Myr) X Y α ov o.f. (average)
hd10002 0.87 5455 0.62 0.35 1.39 0.22 0.454073286
hd11226 1.12 3524 0.67 0.30 1.63 0.29 1.449135786
hd19994 1.28 2539 0.63 0.34 1.37 0.22 1.242964393
hd30177 1.02 5381 0.62 0.34 1.48 0.23 0.215747107
hd39833 1.24 1787 0.74 0.23 2.18 0.36 4.535001821
hd40979 1.08 3286 0.63 0.35 1.76 0.26 0.083869821
hd72659 1.18 4064 0.71 0.27 1.47 0.28 0.905840517
hd74868 1.26 2081 0.64 0.33 1.74 0.28 0.310089143
hd76700 1.15 4964 0.64 0.32 1.64 0.28 0.303584679
hd117618 1.09 4248 0.69 0.29 1.72 0.30 0.581501536
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Parameter estimation in Astrophysics Numerical results

HR diagram with hd10002
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HR diagram with hd39833
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Future work

Future (present) work

Future (present) work
Extend PSwarm to more general constrained optimization problems.
Write a MATLAB code.

Solve a range of astrophysics parameter estimation problems related to
a number of different stars.
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