A Direct search method and an application to Astrophysics

A. Ismael F. Vaz

Production and Systems Department Engineering School Minho University - Braga - Portugal aivaz@dps.uminho.pt

with special thanks to Luís Nunes Vicente and João Fernandes

Universidade Federal do Rio de Janeiro

13 November 2007

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

1 / 72

Introduction

Particle swarm

3 Coordinate search

- The hybrid algorithm
- 5 Numerical results with a set of test problems
- Parameter estimation in Astrophysics

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Introduction

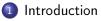
Particle swarm

3 Coordinate search

- The hybrid algorithm
- 5 Numerical results with a set of test problems
- Parameter estimation in Astrophysics

э

・ 伊 ト ・ ヨ ト ・ ヨ ト



Particle swarm

3 Coordinate search

4) The hybrid algorithm

5 Numerical results with a set of test problems

э

・ 伊 ト ・ ヨ ト ・ ヨ ト



Particle swarm

3 Coordinate search

4 The hybrid algorithm

5 Numerical results with a set of test problems

э

글 > - 4 글 >

< 行い

- 2 Particle swarm
- 3 Coordinate search
- 4 The hybrid algorithm
- 5 Numerical results with a set of test problems

э

- 2 Particle swarm
- 3 Coordinate search
- 4 The hybrid algorithm
- 5 Numerical results with a set of test problems
- 6 Parameter estimation in Astrophysics

э

Introduction

- 2 Particle swarm
- 3 Coordinate search
- 4 The hybrid algorithm
- 5 Numerical results with a set of test problems
- 6 Parameter estimation in Astrophysics

э

∃ ► < ∃ ►</p>

< 47 ▶

Problem formulation

The problem we are addressing is:

Problem definition

 $\min_{z \in \mathbb{R}^n} f(z)$ s.t. $\ell \leq z \leq u$,

where $\ell \leq z \leq u$ are understood componentwise.

Smoothness

To apply particle swarm or coordinate search, smoothness of the objective function f(z) is not required.

Assumption

For the convergence analysis of coordinate search, and therefore of the hybrid algorithm, some smoothness of the objective function f(z) is imposed.

Problem formulation

The problem we are addressing is:

Problem definition

 $\min_{z \in \mathbb{R}^n} f(z)$ s.t. $\ell \leq z \leq u$,

where $\ell \leq z \leq u$ are understood componentwise.

Smoothness

To apply particle swarm or coordinate search, smoothness of the objective function f(z) is not required.

Assumption

For the convergence analysis of coordinate search, and therefore of the hybrid algorithm, some smoothness of the objective function f(z) is imposed.

Ismael Vaz (UMinho - PT)

Problem formulation

The problem we are addressing is:

Problem definition

 $\min_{z \in \mathbb{R}^n} f(z)$ s.t. $\ell \leq z \leq u$,

where $\ell \leq z \leq u$ are understood componentwise.

Smoothness

To apply particle swarm or coordinate search, smoothness of the objective function f(z) is not required.

Assumption

For the convergence analysis of coordinate search, and therefore of the hybrid algorithm, some smoothness of the objective function f(z) is imposed.

Introduction

2 Particle swarm

3 Coordinate search

4 The hybrid algorithm

5 Numerical results with a set of test problems

Parameter estimation in Astrophysics

э

A B A A B A

< 🗇 🕨

- Population based algorithms that try to mimic the social behavior of a population (swarm) of individuals (particles).
- An individual behavior is a combination of its past experience (cognitive influence) and of the society experience (social influence).
- In the optimization context, one particle p, at time instance t, is represented by its current position $(x^p(t))$, its best ever position $(y^p(t))$ and a *traveling* velocity $(v^p(t))$.
- Let $\hat{y}(t)$ represent the best particle position of the population.

(日) (周) (日) (日)

- Population based algorithms that try to mimic the social behavior of a population (swarm) of individuals (particles).
- An individual behavior is a combination of its past experience (cognitive influence) and of the society experience (social influence).

• In the optimization context, one particle p, at time instance t, is represented by its current position $(x^p(t))$, its best ever position $(y^p(t))$ and a *traveling* velocity $(v^p(t))$.

• Let $\hat{y}(t)$ represent the best particle position of the population.

< □ > < □ > < □ > < □ > < □ > < □ >

- Population based algorithms that try to mimic the social behavior of a population (swarm) of individuals (particles).
- An individual behavior is a combination of its past experience (cognitive influence) and of the society experience (social influence).
- In the optimization context, one particle p, at time instance t, is represented by its current position $(x^p(t))$, its best ever position $(y^p(t))$ and a *traveling* velocity $(v^p(t))$.

• Let $\hat{y}(t)$ represent the best particle position of the population.

イロト イポト イヨト イヨト

- Population based algorithms that try to mimic the social behavior of a population (swarm) of individuals (particles).
- An individual behavior is a combination of its past experience (cognitive influence) and of the society experience (social influence).
- In the optimization context, one particle p, at time instance t, is represented by its current position $(x^p(t))$, its best ever position $(y^p(t))$ and a *traveling* velocity $(v^p(t))$.
- Let $\hat{y}(t)$ represent the best particle position of the population.

イロト 不得下 イヨト イヨト 二日

The new particle position is updated by

Update particle

$$x^{p}(t+1) = x^{p}(t) + v^{p}(t+1),$$

where $\boldsymbol{v}^p(t+1)$ is the new velocity given by

Update velocity

$$v_j^p(t+1) = \iota(t)v_j^p(t) + \mu\omega_{1j}(t)\left(y_j^p(t) - x_j^p(t)\right) + \nu\omega_{2j}(t)\left(\hat{y}_j(t) - x_j^p(t)\right),$$

for j = 1, ..., n.

- $\iota(t)$ is the inertial factor
- μ is the *cognitive* parameter and ν is the *social* parameter
- $\omega_{1j}(t)$ and $\omega_{2j}(t)$ are random numbers drawn from the uniform (0, 1) distribution.

Ismael Vaz (UMinho - PT)

The new particle position is updated by

Update particle

$$x^{p}(t+1) = x^{p}(t) + v^{p}(t+1),$$

where $\boldsymbol{v}^p(t+1)$ is the new velocity given by

Update velocity

$$v_j^p(t+1) = \iota(t)v_j^p(t) + \mu\omega_{1j}(t)\left(y_j^p(t) - x_j^p(t)\right) + \nu\omega_{2j}(t)\left(\hat{y}_j(t) - x_j^p(t)\right),$$

for j = 1, ..., n.

- $\iota(t)$ is the inertial factor
- μ is the *cognitive* parameter and u is the *social* parameter
- ω_{1j}(t) and ω_{2j}(t) are random numbers drawn from the uniform (0, 1) distribution.

Ismael Vaz (UMinho - PT)

The new particle position is updated by

Update particle

$$x^{p}(t+1) = x^{p}(t) + v^{p}(t+1),$$

where $\boldsymbol{v}^p(t+1)$ is the new velocity given by

Update velocity

$$v_j^p(t+1) = \iota(t)v_j^p(t) + \mu\omega_{1j}(t)\left(y_j^p(t) - x_j^p(t)\right) + \nu\omega_{2j}(t)\left(\hat{y}_j(t) - x_j^p(t)\right),$$

for $j = 1, \ldots, n$.

• $\iota(t)$ is the inertial factor

• μ is the *cognitive* parameter and ν is the *social* parameter

• $\omega_{1j}(t)$ and $\omega_{2j}(t)$ are random numbers drawn from the uniform (0,1) distribution.

Ismael Vaz (UMinho - PT)

The new particle position is updated by

Update particle

$$x^{p}(t+1) = x^{p}(t) + v^{p}(t+1),$$

where $\boldsymbol{v}^p(t+1)$ is the new velocity given by

Update velocity

$$v_j^p(t+1) = \iota(t)v_j^p(t) + \mu\omega_{1j}(t)\left(y_j^p(t) - x_j^p(t)\right) + \nu\omega_{2j}(t)\left(\hat{y}_j(t) - x_j^p(t)\right),$$

for $j = 1, \ldots, n$.

- $\iota(t)$ is the inertial factor
- μ is the *cognitive* parameter and ν is the *social* parameter
- $\omega_{1j}(t)$ and $\omega_{2j}(t)$ are random numbers drawn from the uniform (0,1) distribution.

Ismael Vaz (UMinho - PT)

The new particle position is updated by

Update particle

$$x^{p}(t+1) = x^{p}(t) + v^{p}(t+1),$$

where $\boldsymbol{v}^p(t+1)$ is the new velocity given by

Update velocity

$$v_j^p(t+1) = \iota(t)v_j^p(t) + \mu\omega_{1j}(t)\left(y_j^p(t) - x_j^p(t)\right) + \nu\omega_{2j}(t)\left(\hat{y}_j(t) - x_j^p(t)\right),$$

for $j = 1, \ldots, n$.

- $\iota(t)$ is the inertial factor
- μ is the *cognitive* parameter and ν is the *social* parameter
- $\omega_{1j}(t)$ and $\omega_{2j}(t)$ are random numbers drawn from the uniform (0,1) distribution.

Ismael Vaz (UMinho - PT)

The best ever particle

 $\hat{y}(t)$ is a particle position with global best function value so far, i.e.,

Best position

$$\hat{y}(t) \in \arg\min_{a \in \mathcal{A}} \bar{g}(a)$$

 $\mathcal{A} = \left\{ y^1(t), \dots, y^s(t) \right\}.$

where s is the number of particles in the swarm.

Note

In an algorithmic point of view we just have to keep track of the particle with the best ever function value.

Ismael Vaz (UMinho - PT)

イロト イポト イヨト イヨト

The best ever particle

 $\hat{y}(t)$ is a particle position with global best function value so far, i.e.,

Best position

$$\hat{y}(t) \in \arg\min_{a \in \mathcal{A}} \bar{g}(a)$$

 $\mathcal{A} = \left\{ y^1(t), \dots, y^s(t) \right\}.$

where s is the number of particles in the swarm.

Note

In an algorithmic point of view we just have to keep track of the particle with the best ever function value.

・ 同 ト ・ ヨ ト ・ ヨ ト

Handling bound constraints

In particle swarm, simple bound constraints are handled by a projection onto $\Omega = \{x \in \mathbb{R}^n : \ell \leq x \leq u\}$, for all particles $i = 1, \ldots, s$.

Projection

$$proj_{\Omega}(x_{j}^{i}(t)) = \left\{ \begin{array}{ll} \ell_{j} & \text{ if } x_{j}^{i}(t) < \ell_{j}, \\ u_{j} & \text{ if } x_{j}^{i}(t) > u_{j}, \\ x_{j}^{i}(t) & \text{ otherwise,} \end{array} \right.$$

for j = 1, ..., n.

Ismael Vaz (UMinho - PT)

- 3

- Given s and $v_{tol} > 0$. Let $\{x^1(0), \dots, x^s(0)\}$ and $\{v^1(0), \dots, v^s(0)\}$. • $y^i(0) = x^i(0), i = 1, \dots, s$, and $\hat{y}(0) = \arg\min_{z \in \{y^1(0), \dots, y^s(0)\}} f(z)$.
- 3 $\hat{y}(t+1) = \hat{y}(t)$. For i = 1, ..., s do:

 $* \hat{x}^{i}(t) = prej_{\Omega}(x^{i}(t))$ $* \|ff(\hat{x}^{i}(t)) < f(y^{i}(t)) \text{ then}$

- Otherwise $y^{i}(t+1) = y^{i}(t)$.
- () Compute $v^i(t+1)$ e $x^i(t+1)$, $i=1,\ldots,s$.
- If ||vⁱ(t + 1)|| < v_{tol}, ∀i = 1,...,s, then stop. Otherwise set t = t + 1 and goto Step 3.

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

- Given s and v_{tol} > 0. Let {x¹(0),...,x^s(0)} and {v¹(0),...,v^s(0)}.
 yⁱ(0) = xⁱ(0), i = 1,...,s, and ŷ(0) = arg min_{z∈{y¹(0),...,y^s(0)}} f(z). t = 0.
- (a) $\hat{y}(t+1) = \hat{y}(t)$. For i = 1, ..., s do:
 - $\ddot{x}^{*}(t) = proj_{\Omega}(x^{*}(t))$. • If $f(\ddot{x}^{*}(t)) < f(y^{*}(t))$ then
 - Otherwise yⁱ(t + 1) = yⁱ(t).
- In Compute $v^i(t+1)$ e $x^i(t+1)$, $i=1,\ldots,s$.
- If ||vⁱ(t + 1)|| < v_{tol}, ∀i = 1,...,s, then stop. Otherwise set t = t + 1 and goto Step 3.

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

- Given s and v_{tol} > 0. Let {x¹(0),...,x^s(0)} and {v¹(0),...,v^s(0)}.
 yⁱ(0) = xⁱ(0), i = 1,...,s, and ŷ(0) = arg min_{z∈{y¹(0),...,y^s(0)}} f(z). t = 0.
- (a) $\hat{y}(t+1) = \hat{y}(t)$. For $i = 1, \dots, s$ do:

• $\hat{x}^i(t) = proj_\Omega(x^i(t)).$ • If $f(\hat{x}^i(t)) < f(y^i(t))$ then

(t+1) < f(g(t+1)) < f(g(t+1)) then $g(t+1) = g^i(t+1)$.

• Otherwise $y^i(t+1) = y^i(t)$.

- () Compute $v^i(t+1)$ e $x^i(t+1)$, $i=1,\ldots,s$.
- If ||vⁱ(t + 1)|| < v_{tol}, ∀i = 1,...,s, then stop. Otherwise set t = t + 1 and goto Step 3.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Given s and v_{tol} > 0. Let {x¹(0),...,x^s(0)} and {v¹(0),...,v^s(0)}.
 yⁱ(0) = xⁱ(0), i = 1,...,s, and ŷ(0) = arg min_{z∈{y¹(0),...,y^s(0)}} f(z). t = 0.
 ŷ(t + 1) = ŷ(t).
- For $i = 1, \dots, s$ do: • $\hat{x}^i(t) = proj_{\Omega}(x^i(t)).$
 - If $f(\hat{x}^i(t)) < f(y^i(t))$ then

 $\langle f(\hat{y}(t+1)) \rangle$ then $\hat{y}(t+1) = y^{i}(t+1)$.

• Otherwise $y^i(t+1) = y^i(t)$.

- Compute $v^i(t+1)$ e $x^i(t+1)$, $i=1,\ldots,s$.
- If ||vⁱ(t + 1)|| < v_{tol}, ∀i = 1,...,s, then stop. Otherwise set t = t + 1 and goto Step 3.

イロト イポト イヨト イヨト

- Given s and v_{tol} > 0. Let {x¹(0),...,x^s(0)} and {v¹(0),...,v^s(0)}.
 yⁱ(0) = xⁱ(0), i = 1,...,s, and ŷ(0) = arg min_{z∈{y¹(0),...,y^s(0)}} f(z). t = 0.
- - Otherwise $y^i(t+1) = y^i(t)$.
 - () Compute $v^i(t+1)$ e $x^i(t+1)$, $i=1,\ldots,s$.
- If ||vⁱ(t + 1)|| < v_{tol}, ∀i = 1,...,s, then stop. Otherwise set t = t + 1 and goto Step 3.

- **1** Given s and $v_{tol} > 0$. Let $\{x^1(0), \ldots, x^s(0)\}$ and $\{v^1(0), \ldots, v^s(0)\}$. 2 $y^i(0) = x^i(0), i = 1, ..., s$, and $\hat{y}(0) = \arg \min_{z \in \{y^1(0), ..., y^s(0)\}} f(z)$. t = 0.**3** $\hat{y}(t+1) = \hat{y}(t)$. For $i = 1, \ldots, s$ do: • $\hat{x}^i(t) = proj_{\Omega}(x^i(t)).$ • If $f(\hat{x}^i(t)) < f(y^i(t))$ then • $y^{i}(t+1) = \hat{x}^{i}(t)$.
- Compute $v^i(t+1)$ e $x^i(t+1)$, $i=1,\ldots,s$.
- If ||vⁱ(t + 1)|| < v_{tol}, ∀i = 1,...,s, then stop. Otherwise set t = t + 1 and goto Step 3.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- -

- **Q** Given s and $v_{tol} > 0$. Let $\{x^1(0), \ldots, x^s(0)\}$ and $\{v^1(0), \ldots, v^s(0)\}$. 2 $y^i(0) = x^i(0), i = 1, ..., s$, and $\hat{y}(0) = \arg \min_{z \in \{y^1(0), ..., y^s(0)\}} f(z)$. t = 0.
- **3** $\hat{y}(t+1) = \hat{y}(t)$. For $i = 1, \ldots, s$ do: • $\hat{x}^i(t) = proj_{\Omega}(x^i(t)).$ • If $f(\hat{x}^i(t)) < f(y^i(t))$ then • $y^{i}(t+1) = \hat{x}^{i}(t)$. • If $f(y^i(t+1)) < f(\hat{y}(t+1))$ then $\hat{y}(t+1) = y^i(t+1)$.

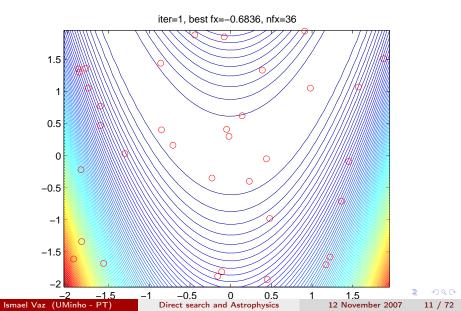
- **Q** Given s and $v_{tol} > 0$. Let $\{x^1(0), \ldots, x^s(0)\}$ and $\{v^1(0), \ldots, v^s(0)\}$. 2 $y^i(0) = x^i(0), i = 1, ..., s$, and $\hat{y}(0) = \arg \min_{z \in \{y^1(0), ..., y^s(0)\}} f(z)$. t = 0.
- **3** $\hat{y}(t+1) = \hat{y}(t)$. For $i = 1, \ldots, s$ do: • $\hat{x}^i(t) = proj_{\Omega}(x^i(t)).$ • If $f(\hat{x}^i(t)) < f(y^i(t))$ then • $y^{i}(t+1) = \hat{x}^{i}(t)$. • If $f(y^i(t+1)) < f(\hat{y}(t+1))$ then $\hat{y}(t+1) = y^i(t+1)$. • Otherwise $y^i(t+1) = y^i(t)$.

Q Given s and $v_{tol} > 0$. Let $\{x^1(0), \ldots, x^s(0)\}$ and $\{v^1(0), \ldots, v^s(0)\}$. 2 $y^i(0) = x^i(0), i = 1, ..., s$, and $\hat{y}(0) = \arg \min_{z \in \{y^1(0), ..., y^s(0)\}} f(z)$. t = 0.**3** $\hat{y}(t+1) = \hat{y}(t)$. For $i = 1, \ldots, s$ do: • $\hat{x}^i(t) = proj_{\Omega}(x^i(t)).$ • If $f(\hat{x}^i(t)) < f(y^i(t))$ then • $u^i(t+1) = \hat{x}^i(t)$. • If $f(y^i(t+1)) < f(\hat{y}(t+1))$ then $\hat{y}(t+1) = y^i(t+1)$. • Otherwise $y^i(t+1) = y^i(t)$. **Outpute** $v^{i}(t+1) \in x^{i}(t+1), i = 1, ..., s$.

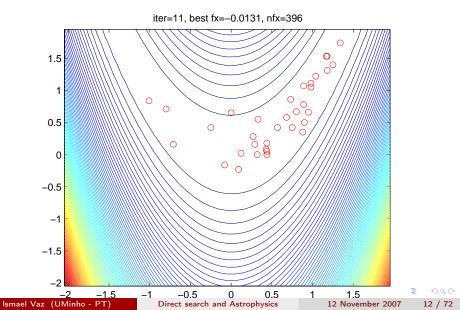
Q Given s and $v_{tol} > 0$. Let $\{x^1(0), \ldots, x^s(0)\}$ and $\{v^1(0), \ldots, v^s(0)\}$. 2 $y^i(0) = x^i(0), i = 1, ..., s$, and $\hat{y}(0) = \arg \min_{z \in \{y^1(0), ..., y^s(0)\}} f(z)$. t = 0.**3** $\hat{y}(t+1) = \hat{y}(t)$. For $i = 1, \ldots, s$ do: • $\hat{x}^i(t) = proj_{\Omega}(x^i(t)).$ • If $f(\hat{x}^i(t)) < f(y^i(t))$ then • $y^{i}(t+1) = \hat{x}^{i}(t)$. • If $f(y^i(t+1)) < f(\hat{y}(t+1))$ then $\hat{y}(t+1) = y^i(t+1)$. • Otherwise $y^i(t+1) = y^i(t)$. **Outputs** Outputs $v^i(t+1) \in x^i(t+1), i = 1, ..., s$. **5** If $||v^i(t+1)|| < v_{tol}, \forall i = 1, \dots, s$, then stop. Otherwise set t = t+1and goto Step 3.

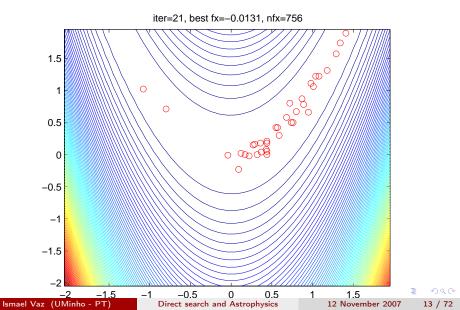
10 / 72

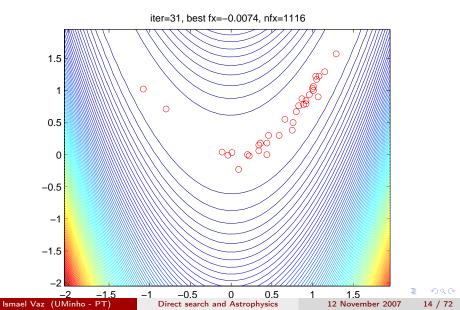
Example

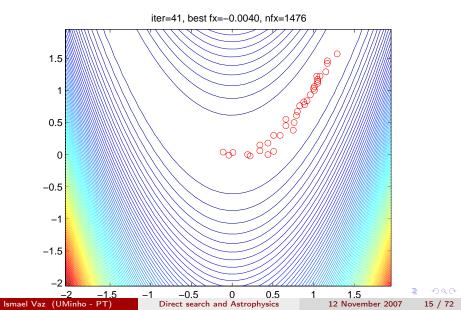


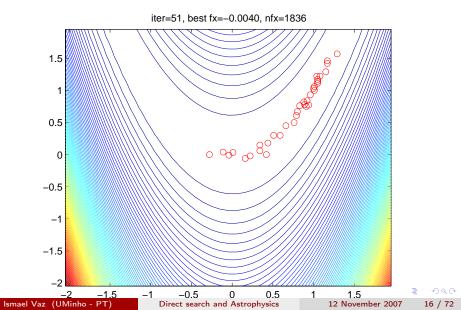
Example

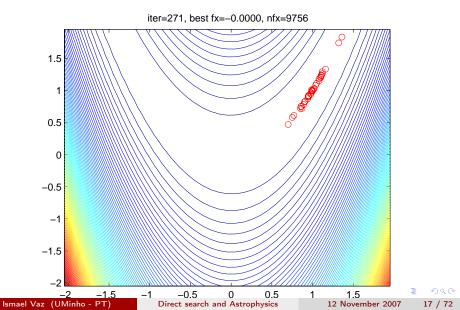


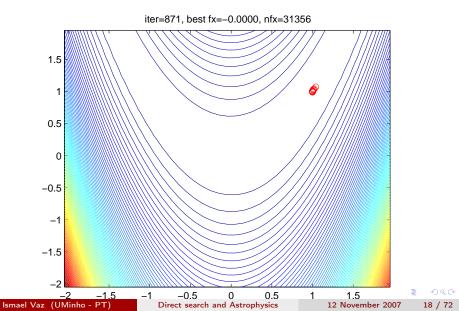


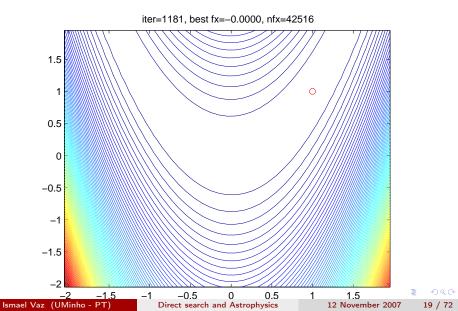












Some properties

- Easy to implement.

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

12 November 2007

20 / 72

(日) (同) (目) (日)

Some properties

- Easy to implement.
- Easy to deal with discrete variables. •

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

(日) (同) (目) (日)

Some properties

- Easy to implement.
- Easy to deal with discrete variables.
- Easy to parallelize.

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

(日) (同) (目) (日)

Some properties

- Easy to implement.
- Easy to deal with discrete variables.
- Easy to parallelize.
- For a correct choice of parameters the algorithm terminates $(\lim_{t\to+\infty} v(t) = 0).$

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

(日) (同) (目) (日)

э

Some properties

- Easy to implement.
- Easy to deal with discrete variables.
- Easy to parallelize.
- For a correct choice of parameters the algorithm terminates $(\lim_{t\to+\infty} v(t) = 0).$
- Uses only objective function values.

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

(日) (同) (日) (日) (日)

Some properties

- Easy to implement.
- Easy to deal with discrete variables.
- Easy to parallelize.
- For a correct choice of parameters the algorithm terminates $(\lim_{t\to+\infty} v(t) = 0).$
- Uses only objective function values.
- Convergence for a global optimum under strong assumptions (unpractical).

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

12 November 2007

- A TE N - A TE N

Some properties

- Easy to implement.
- Easy to deal with discrete variables.
- Easy to parallelize.
- For a correct choice of parameters the algorithm terminates $(\lim_{t\to+\infty} v(t) = 0).$
- Uses only objective function values.
- Convergence for a global optimum under strong assumptions (unpractical).
- High number of function evaluations.

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

12 November 2007

Outline

Coordinate search

э

21 / 72

< 17 ▶

- Direct search methods are an important class of optimization methods that try to minimize a function by comparing objective function values at a finite number of points.
- Direct search methods do not use derivative information of the objective function nor try to approximate it.

- Coordinate search is a simple direct search method.
- One of the most important definitions in coordinate search is *positive spanning sets*.

- Direct search methods are an important class of optimization methods that try to minimize a function by comparing objective function values at a finite number of points.
- Direct search methods do not use derivative information of the objective function nor try to approximate it.

- Coordinate search is a simple direct search method.
- One of the most important definitions in coordinate search is *positive spanning sets*.

A TEN A TEN

- Direct search methods are an important class of optimization methods that try to minimize a function by comparing objective function values at a finite number of points.
- Direct search methods do not use derivative information of the objective function nor try to approximate it.

- Coordinate search is a simple direct search method.
- One of the most important definitions in coordinate search is *positive spanning sets*.

イロト イポト イヨト イヨト

- Direct search methods are an important class of optimization methods that try to minimize a function by comparing objective function values at a finite number of points.
- Direct search methods do not use derivative information of the objective function nor try to approximate it.

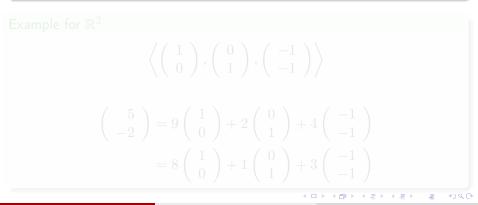
- Coordinate search is a simple direct search method.
- One of the most important definitions in coordinate search is *positive spanning sets*.

4 3 5 4 3 5 5

Positive spanning sets

What is a (positive) spanning set for \mathbb{R}^n ?

Is a set of vector that generate all the space (\mathbb{R}^n) , *i.e.*, all the point in the space are a linear combination (with nonnegative coefficients) of the vector in the set.



Direct search and Astrophysics

Positive spanning sets

What is a (positive) spanning set for \mathbb{R}^n ?

Is a set of vector that generate all the space (\mathbb{R}^n) , *i.e.*, all the point in the space are a linear combination (with nonnegative coefficients) of the vector in the set.

Example for \mathbb{R}^2 $\left\langle \left(\begin{array}{c} 1\\0\end{array}\right), \left(\begin{array}{c} 0\\1\end{array}\right), \left(\begin{array}{c} -1\\-1\end{array}\right) \right\rangle$ $\begin{pmatrix} 5 \\ -2 \end{pmatrix} = 9 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 4 \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ $=8\left(\begin{array}{c}1\\0\end{array}\right)+1\left(\begin{array}{c}0\\1\end{array}\right)+3\left(\begin{array}{c}-1\\-1\end{array}\right)$

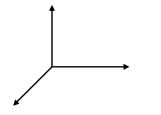
Ismael Vaz (UMinho - PT)

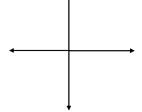
Direct search and Astrophysics

12 November 2007

23 / 72

Type of basis





Minimal basis with n + 1 vectors (3 in the \mathbb{R}^2 case). Maximal basis with 2n vectors (4 in the \mathbb{R}^2 case).

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

12 November 2007

3. 3

24 / 72

Some definitions

Positive maximal basis

Formed by the coordinate vectors and their negative counterparts:

$$D_{\oplus} = \{e_1, \ldots, e_n, -e_1, \ldots, -e_n\}.$$

 D_{\oplus} spans \mathbb{R}^n with nonnegative coefficients.

Ismael Vaz (UMinho - PT)

Some definitions

Positive maximal basis

Formed by the coordinate vectors and their negative counterparts:

$$D_{\oplus} = \{e_1, \ldots, e_n, -e_1, \ldots, -e_n\}.$$

 D_{\oplus} spans \mathbb{R}^n with nonnegative coefficients.

Coordinate search

The direct search method based on D_{\oplus} is known as coordinate or compass search.

Some definitions

Sets

Given D_{\oplus} and the current point y(t), two sets of points are defined: a grid M_t and the poll set P_t .

The grid M_t is given by

$$M_t = \left\{ y(t) + \alpha(t) D_{\oplus} z, \ z \in \mathbb{N}_0^{|D_{\oplus}|} \right\},$$

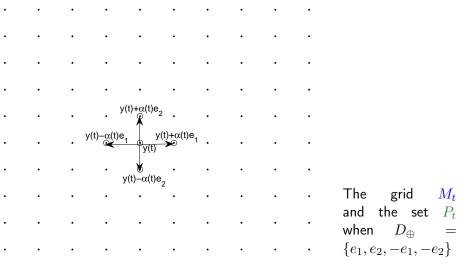
where $\alpha(t)>0$ is the grid size parameter. The poll set is given by

 $P_t = \{y(t) + \alpha(t)d, \ d \in D_{\oplus}\}.$

Ismael Vaz (UMinho - PT)

26 / 72

Example of M_t and P_t



• The search step conducts a finite search on the grid M_t .

- If no success is obtained in the search step then a poll step follows.
- The poll step evaluates the objective function at the elements of P_t , searching for points which have a lower objective function value.
- If success is attained, the value of $\alpha(t)$ may be increased, otherwise it is reduced.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

- The search step conducts a finite search on the grid M_t .
- If no success is obtained in the search step then a poll step follows.
- The poll step evaluates the objective function at the elements of P_t , searching for points which have a lower objective function value.
- If success is attained, the value of $\alpha(t)$ may be increased, otherwise it is reduced.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

- The search step conducts a finite search on the grid M_t .
- If no success is obtained in the search step then a poll step follows.
- The poll step evaluates the objective function at the elements of P_t , searching for points which have a lower objective function value.
- If success is attained, the value of $\alpha(t)$ may be increased, otherwise it is reduced.

- The search step conducts a finite search on the grid M_t .
- If no success is obtained in the search step then a poll step follows.
- The poll step evaluates the objective function at the elements of *P_t*, searching for points which have a lower objective function value.
- If success is attained, the value of $\alpha(t)$ may be increased, otherwise it is reduced.

Handling bound constraints

For the coordinate search method it is sufficient to initialize the algorithm with a feasible initial guess ($y(0) \in \Omega$) and to use \hat{f} as the objective function.

Penalty/Barrier function

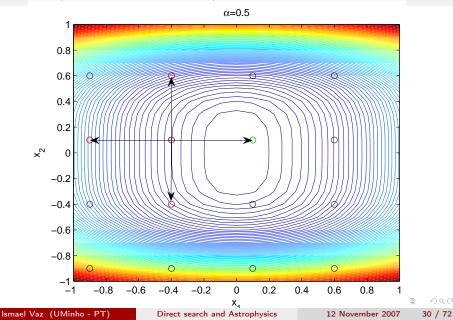
$$\hat{f}(z) = \left\{ egin{array}{cc} f(z) & ext{if} \ z \in \Omega, \ +\infty & ext{otherwise.} \end{array}
ight.$$

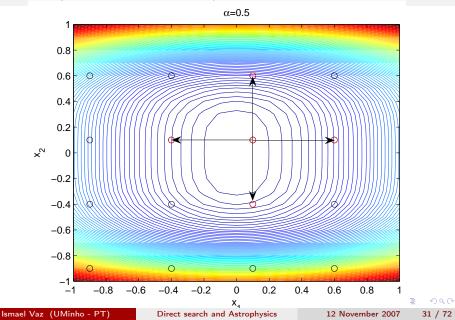
Ismael Vaz (UMinho - PT)

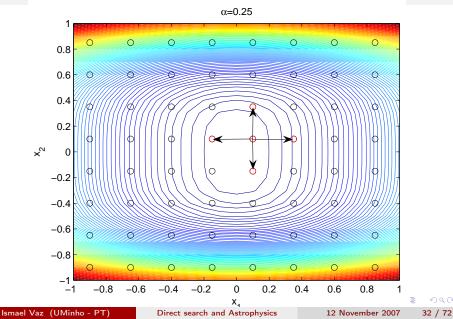
Direct search and Astrophysics

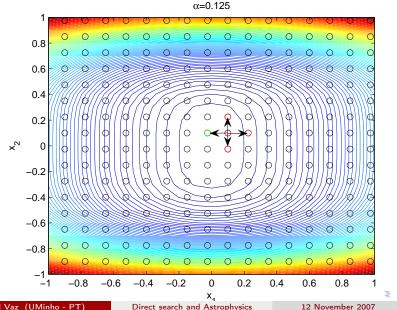
12 November 2007

29 / 72





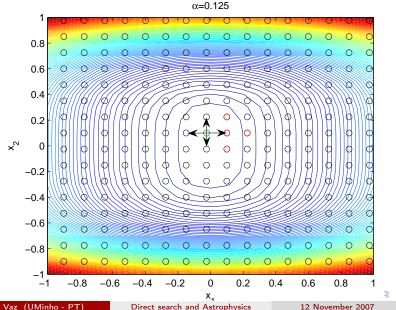




Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

33 / 72



Ismael Vaz (UMinho - PT)

34 / 72

```
• Given \alpha_{tol} > 0, D = D_{\oplus}, \alpha(0) > 0 e y(0) (feasible). t = 0.
```

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

12 November 2007

= 900

35 / 72

- Given $\alpha_{tol} > 0$, $D = D_{\oplus}$, $\alpha(0) > 0$ e y(0) (feasible). t = 0.
- [Search step]

Compute f at a finite set of points in the grid M_t . If there is a $z(t) \in M_t$ such that $\hat{f}(z(t)) < \hat{f}(y(t))$ then set y(t+1) = z(t), $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion — success).

Ismael Vaz (UMinho - PT)

35 / 72

- $\textbf{ Given } \alpha_{tol} > 0, \ D = D_{\oplus}, \ \alpha(0) > 0 \ \textbf{e} \ y(0) \ \textbf{(feasible)}. \ t = 0.$
- Search step

Compute f at a finite set of points in the grid M_t . If there is a $z(t) \in M_t$ such that $\hat{f}(z(t)) < \hat{f}(y(t))$ then set y(t+1) = z(t), $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion — success).

- [Poll step] The poll step is skipped with the search step was successful.
 - If there exists $d(t) \in D$ such that $f(y(t) + \alpha(t)d(t)) < f(y(t))$ then
 - $y(t+1) = y(t) + \alpha(t)d(t)$ (success).
 - $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion).
 - Otherwise, $\hat{f}(y(t) + \alpha(t)d(t)) \geq \hat{f}(y(t))$ for all $d(t) \in D$ and

y(t+1)=y(t) (unsuccessful).

lpha(t+1) = heta(t) lpha(t) (contraction)

• If $\alpha(t+1) < \alpha_{tol}$ then stop. Otherwise, t = t+1 and go to Step 2.

- $\textbf{ Given } \alpha_{tol} > 0, \ D = D_{\oplus}, \ \alpha(0) > 0 \ \textbf{e} \ y(0) \ \textbf{(feasible)}. \ t = 0.$
- Search step]

Compute f at a finite set of points in the grid M_t . If there is a $z(t) \in M_t$ such that $\hat{f}(z(t)) < \hat{f}(y(t))$ then set y(t+1) = z(t), $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion — success).

[Poll step]

The poll step is skipped with the search step was successful.

- If there exists $d(t) \in D$ such that $\hat{f}(y(t) + \alpha(t)d(t)) < \hat{f}(y(t))$ then
 - $y(t+1) = y(t) + \alpha(t)d(t)$ (success).
 - $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion).
- Otherwise, $\hat{f}(y(t) + \alpha(t)d(t)) \geq \hat{f}(y(t))$ for all $d(t) \in D$ and

• If $\alpha(t+1) < \alpha_{tol}$ then stop. Otherwise, t = t+1 and go to Step 2.

- $\textbf{ Given } \alpha_{tol} > 0, \ D = D_{\oplus}, \ \alpha(0) > 0 \ \textbf{e} \ y(0) \ \textbf{(feasible)}. \ t = 0.$
- Search step]

Compute f at a finite set of points in the grid M_t . If there is a $z(t) \in M_t$ such that $\hat{f}(z(t)) < \hat{f}(y(t))$ then set y(t+1) = z(t), $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion — success).

[Poll step]

The poll step is skipped with the search step was successful.

• If there exists $d(t) \in D$ such that $\hat{f}(y(t) + \alpha(t)d(t)) < \hat{f}(y(t))$ then

•
$$y(t+1) = y(t) + \alpha(t)d(t)$$
 (success).

• $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion)

• Otherwise, $\hat{f}(y(t) + \alpha(t)d(t)) \geq \hat{f}(y(t))$ for all $d(t) \in D$ and

If $\alpha(t+1) < \alpha_{tol}$ then stop. Otherwise, t = t+1 and go to Step 2.

・ロット 全部 マイロマイロマ

= 900

- Given $\alpha_{tol} > 0$, $D = D_{\oplus}$, $\alpha(0) > 0$ e y(0) (feasible). t = 0.
- [Search step]

Compute f at a finite set of points in the grid M_t . If there is a $z(t) \in M_t$ such that $\hat{f}(z(t)) < \hat{f}(y(t))$ then set y(t+1) = z(t), $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion — success).

[Poll step]

The poll step is skipped with the search step was successful.

• If there exists $d(t) \in D$ such that $\hat{f}(y(t) + \alpha(t)d(t)) < \hat{f}(y(t))$ then

•
$$y(t+1) = y(t) + \alpha(t)d(t)$$
 (success).

- $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion).

Ismael Vaz (UMinho - PT)

- Given $\alpha_{tol} > 0$, $D = D_{\oplus}$, $\alpha(0) > 0$ e y(0) (feasible). t = 0.
- [Search step]

Compute f at a finite set of points in the grid M_t . If there is a $z(t) \in M_t$ such that $\hat{f}(z(t)) < \hat{f}(y(t))$ then set y(t+1) = z(t), $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion — success).

[Poll step]

The poll step is skipped with the search step was successful.

• If there exists $d(t) \in D$ such that $\hat{f}(y(t) + \alpha(t)d(t)) < \hat{f}(y(t))$ then

•
$$y(t+1) = y(t) + \alpha(t)d(t)$$
 (success).

- $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion).
- Otherwise, $\hat{f}(y(t) + \alpha(t)d(t)) \geq \hat{f}(y(t))$ for all $d(t) \in D$ and

- Given $\alpha_{tol} > 0$, $D = D_{\oplus}$, $\alpha(0) > 0$ e y(0) (feasible). t = 0.
- [Search step]

Compute f at a finite set of points in the grid M_t . If there is a $z(t) \in M_t$ such that $\hat{f}(z(t)) < \hat{f}(y(t))$ then set y(t+1) = z(t), $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion — success).

[Poll step]

The poll step is skipped with the search step was successful.

• If there exists $d(t) \in D$ such that $\hat{f}(y(t) + \alpha(t)d(t)) < \hat{f}(y(t))$ then

•
$$y(t+1) = y(t) + \alpha(t)d(t)$$
 (success).

• $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion).

• Otherwise, $\hat{f}(y(t) + \alpha(t)d(t)) \geq \hat{f}(y(t))$ for all $d(t) \in D$ and

- y(t+1) = y(t) (unsuccessful).

・ロット 全部 マート・キャー

= 900

- $\textbf{ Given } \alpha_{tol} > 0, \ D = D_{\oplus}, \ \alpha(0) > 0 \ \textbf{e} \ y(0) \ \textbf{(feasible)}. \ t = 0.$
- Search step]

Compute f at a finite set of points in the grid M_t . If there is a $z(t) \in M_t$ such that $\hat{f}(z(t)) < \hat{f}(y(t))$ then set y(t+1) = z(t), $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion — success).

[Poll step]

The poll step is skipped with the search step was successful.

• If there exists $d(t)\in D$ such that $\hat{f}(y(t)+\alpha(t)d(t))<\hat{f}(y(t))$ then

•
$$y(t+1) = y(t) + \alpha(t)d(t)$$
 (success).

• $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion).

• Otherwise, $\hat{f}(y(t) + \alpha(t)d(t)) \geq \hat{f}(y(t))$ for all $d(t) \in D$ and

- y(t+1) = y(t) (unsuccessful).
- $\alpha(t+1) = \theta(t)\alpha(t)$ (contraction).

④ If $\alpha(t+1) < \alpha_{tol}$ then stop. Otherwise, t = t+1 and go to Step 2.

・ロット 全部 マート・キャー

= 900

- $\textbf{ Given } \alpha_{tol} > 0, \ D = D_{\oplus}, \ \alpha(0) > 0 \ \textbf{e} \ y(0) \ \textbf{(feasible)}. \ t = 0.$
- Search step]

Compute f at a finite set of points in the grid M_t . If there is a $z(t) \in M_t$ such that $\hat{f}(z(t)) < \hat{f}(y(t))$ then set y(t+1) = z(t), $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion — success).

[Poll step]

The poll step is skipped with the search step was successful.

• If there exists $d(t)\in D$ such that $\hat{f}(y(t)+\alpha(t)d(t))<\hat{f}(y(t))$ then

•
$$y(t+1) = y(t) + \alpha(t)d(t)$$
 (success).

• $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion).

- Otherwise, $\hat{f}(y(t)+\alpha(t)d(t))\geq \hat{f}(y(t))$ for all $d(t)\in D$ and

- y(t+1) = y(t) (unsuccessful).
- $\alpha(t+1) = \theta(t)\alpha(t)$ (contraction).

 $\textbf{ If } \alpha(t+1) < \alpha_{tol} \text{ then stop. Otherwise, } t = t+1 \text{ and go to Step 2. }$

Outline

Introduction

- Particle swarm
- 3 Coordinate search

4 The hybrid algorithm

- 5 Numerical results with a set of test problems
- 6 Parameter estimation in Astrophysics

B> B

Hybrid algorithm

The hybrid algorithm tries to combine the best of both algorithms.

From particle swarm

The particle swarm ability of searching for the global optimum.

From coordinate search

The guarantee to obtain at least a stationary point. Some robustness.

Central idea

To apply the particle swarm algorithm in the search step and when no further success is possible to apply the poll step.

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

12 November 2007

(日) (同) (三) (三)

Hybrid algorithm

The hybrid algorithm tries to combine the best of both algorithms.

From particle swarm

The particle swarm ability of searching for the global optimum.

From coordinate search

The guarantee to obtain at least a stationary point. Some robustness.

Central idea

To apply the particle swarm algorithm in the search step and when no further success is possible to apply the poll step.

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

12 November 2007

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hybrid algorithm

The hybrid algorithm tries to combine the best of both algorithms.

From particle swarm

The particle swarm ability of searching for the global optimum.

From coordinate search

The guarantee to obtain at least a stationary point. Some robustness.

Central idea

To apply the particle swarm algorithm in the search step and when no further success is possible to apply the poll step.

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Hybrid algorithm

The hybrid algorithm tries to combine the best of both algorithms.

From particle swarm

The particle swarm ability of searching for the global optimum.

From coordinate search

The guarantee to obtain at least a stationary point. Some robustness.

Central idea

To apply the particle swarm algorithm in the search step and when no further success is possible to apply the poll step.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation for PSwarm

Central idea

A particle swarm iteration is performed in the search step and if no progress is attained a poll step is taken.

A B A A B A

A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >

Motivation for PSwarm

Central idea

A particle swarm iteration is performed in the search step and if no progress is attained a poll step is taken.

Key points

(日) (周) (日) (日)

Motivation for PSwarm

Central idea

A particle swarm iteration is performed in the search step and if no progress is attained a poll step is taken.

Key points

- In the first iterations the algorithm takes advantage of the particle swarm ability to find a global optimum (exploiting the search space), while in the last iterations the algorithm takes advantage of the pattern search robustness to find a stationary point.
- The number of particles in the swarm search can be decreased along the iterations (no need to have a large number of particles around a local optimum).

イロト イポト イヨト イヨト

Motivation for PSwarm

Central idea

A particle swarm iteration is performed in the search step and if no progress is attained a poll step is taken.

Key points

- In the first iterations the algorithm takes advantage of the particle swarm ability to find a global optimum (exploiting the search space), while in the last iterations the algorithm takes advantage of the pattern search robustness to find a stationary point.
- The number of particles in the swarm search can be decreased along the iterations (no need to have a large number of particles around a local optimum).

イロト イポト イヨト イヨト

- Given $\alpha_{tol} > 0$, $D = D_{\oplus}$, $\alpha(0) > 0$, s, $v_{tol} > 0$. Set $\{x^1(0), \dots, x^s(0)\}$ and $\{v^1(0), \dots, v^s(0)\}$. t = 0.
- (a) $y^i(0) = x^i(0), i = 1, ..., s, e \hat{y}(0) = \arg\min_{z \in \{y^1(0), ..., y^s(0)\}} f(z).$
- () [Search step] $\hat{y}(t+1) = \hat{y}(t)$. For i = 1, ..., s do:
 - $x^{*}(t) = proj_{M_{t}}(x^{*}(t))$ = $proj_{M_{t}}(x^{*}(t)) < f(p'(t))$ then

Otherwise $y^{i}(t + 1) = y^{i}(t)$.

3

39 / 72

イロト 不得下 イヨト イヨト

1 Given $\alpha_{tol} > 0$, $D = D_{\oplus}$, $\alpha(0) > 0$, s, $v_{tol} > 0$. Set $\{x^1(0), \ldots, x^s(0)\}$ and $\{v^1(0), \ldots, v^s(0)\}$. t = 0. 2 $y^i(0) = x^i(0), i = 1, ..., s, e \hat{y}(0) = \arg \min_{z \in \{y^1(0), ..., y^s(0)\}} f(z).$

39 / 72

• Given $\alpha_{tol} > 0$, $D = D_{\oplus}$, $\alpha(0) > 0$, s, $v_{tol} > 0$. Set $\{x^1(0), \ldots, x^s(0)\}$ and $\{v^1(0), \ldots, v^s(0)\}$. t = 0. 2 $y^i(0) = x^i(0), i = 1, ..., s, e \hat{y}(0) = \arg \min_{z \in \{y^1(0), ..., y^s(0)\}} f(z).$ Search step] $\hat{y}(t+1) = \hat{y}(t).$ For $i = 1, \ldots, s$ do:

• Given $\alpha_{tol} > 0$, $D = D_{\oplus}$, $\alpha(0) > 0$, s, $v_{tol} > 0$. Set $\{x^1(0), \ldots, x^s(0)\}$ and $\{v^1(0), \ldots, v^s(0)\}$. t = 0. 2 $y^i(0) = x^i(0), i = 1, ..., s, e \hat{y}(0) = \arg \min_{z \in \{y^1(0), ..., y^s(0)\}} f(z).$ Search step] $\hat{y}(t+1) = \hat{y}(t).$ For $i = 1, \ldots, s$ do: • $\hat{x}^{i}(t) = proj_{M_{\star}}(x^{i}(t)).$

1 Given $\alpha_{tol} > 0$, $D = D_{\oplus}$, $\alpha(0) > 0$, s, $v_{tol} > 0$. Set $\{x^1(0), \ldots, x^s(0)\}$ and $\{v^1(0), \ldots, v^s(0)\}$. t = 0. 2 $y^i(0) = x^i(0), i = 1, ..., s, e \hat{y}(0) = \arg \min_{z \in \{y^1(0), ..., y^s(0)\}} f(z).$ Search step] $\hat{y}(t+1) = \hat{y}(t).$ For $i = 1, \ldots, s$ do: • $\hat{x}^{i}(t) = proj_{M_{\star}}(x^{i}(t)).$ • If $\hat{f}(\hat{x}^i(t)) < \hat{f}(y^i(t))$ then

1 Given $\alpha_{tol} > 0$, $D = D_{\oplus}$, $\alpha(0) > 0$, s, $v_{tol} > 0$. Set $\{x^1(0), \ldots, x^s(0)\}$ and $\{v^1(0), \ldots, v^s(0)\}$. t = 0. 2 $y^{i}(0) = x^{i}(0), i = 1, ..., s, e \hat{y}(0) = \arg \min_{z \in \{y^{1}(0),...,y^{s}(0)\}} f(z).$ Search step] $\hat{y}(t+1) = \hat{y}(t).$ For $i = 1, \ldots, s$ do: • $\hat{x}^{i}(t) = proj_{M_{\star}}(x^{i}(t)).$ • If $\hat{f}(\hat{x}^i(t)) < \hat{f}(y^i(t))$ then • $y^{i}(t+1) = \hat{x}^{i}(t)$.

1 Given $\alpha_{tol} > 0$, $D = D_{\oplus}$, $\alpha(0) > 0$, s, $v_{tol} > 0$. Set $\{x^1(0), \ldots, x^s(0)\}$ and $\{v^1(0), \ldots, v^s(0)\}$. t = 0. 2 $y^i(0) = x^i(0), i = 1, ..., s, e \hat{y}(0) = \arg \min_{z \in \{y^1(0), ..., y^s(0)\}} f(z).$ Search step] $\hat{y}(t+1) = \hat{y}(t).$ For $i = 1, \ldots, s$ do: • $\hat{x}^{i}(t) = proj_{M_{\star}}(x^{i}(t)).$ • If $\hat{f}(\hat{x}^i(t)) < \hat{f}(y^i(t))$ then • $y^{i}(t+1) = \hat{x}^{i}(t)$. • $f(y^{i}(t+1)) < f(\hat{y}(t+1))$ then $\hat{y}(t+1) = y^{i}(t+1)$ (success). $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion).

39 / 72

1 Given $\alpha_{tol} > 0$, $D = D_{\oplus}$, $\alpha(0) > 0$, s, $v_{tol} > 0$. Set $\{x^1(0), \ldots, x^s(0)\}$ and $\{v^1(0), \ldots, v^s(0)\}$. t = 0. 2 $y^{i}(0) = x^{i}(0), i = 1, ..., s, e \hat{y}(0) = \arg \min_{z \in \{y^{1}(0),...,y^{s}(0)\}} f(z).$ Search step] $\hat{y}(t+1) = \hat{y}(t).$ For $i = 1, \ldots, s$ do: • $\hat{x}^{i}(t) = proj_{M_{\star}}(x^{i}(t)).$ • If $\hat{f}(\hat{x}^i(t)) < \hat{f}(y^i(t))$ then • $y^{i}(t+1) = \hat{x}^{i}(t)$. • $f(u^{i}(t+1)) < f(\hat{y}(t+1))$ then $\hat{y}(t+1) = y^{i}(t+1)$ (success). $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion). • Otherwise $u^{i}(t+1) = u^{i}(t)$.

4. **[Poll Step]** The poll step is skipped with the search step was successful.

- If there exists $d(t) \in D$ such that $\hat{f}(\hat{y}(t) + \alpha(t)d(t)) < \hat{f}(\hat{y}(t))$ then • $\hat{y}(t+1) = \hat{y}(t) + \alpha(t)d(t)$ (success)
- Otherwise, $\hat{f}(\hat{y}(t) + \alpha(t)d(t)) \ge \hat{f}(\hat{y}(t))$ para todo o $d(t) \in D$, and $\psi(t+1) = \psi(t) \alpha(t)$ (unsuccessful)
- 5. Compute $v^{i}(t+1)$ and $x^{i}(t+1)$, i = 1, ..., s.
- 6. If $\alpha(t+1) < \alpha_{tol}$ and $||v^i(t+1)|| < v_{tol}$, for all i = 1, ..., s, then stop. Otherwise, t = t+1 and go to Step 3.

< □ > < □ > < □ > < □ > < □ > < □ >

4. [Poll Step]

The poll step is skipped with the search step was successful.

• If there exists $d(t)\in D$ such that $\hat{f}(\hat{y}(t)+\alpha(t)d(t))<\hat{f}(\hat{y}(t))$ then

• $\hat{y}(t+1) = \hat{y}(t) + \alpha(t)d(t)$ (success).

- $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion).
- Otherwise, $\hat{f}(\hat{y}(t) + \alpha(t)d(t)) \ge \hat{f}(\hat{y}(t))$ para todo o $d(t) \in D$, and
- 5. Compute $v^{i}(t+1)$ and $x^{i}(t+1)$, i = 1, ..., s.
- 6. If $\alpha(t+1) < \alpha_{tol}$ and $||v^i(t+1)|| < v_{tol}$, for all i = 1, ..., s, then stop. Otherwise, t = t+1 and go to Step 3.

< □ > < □ > < □ > < □ > < □ > < □ >

4. [Poll Step]

The poll step is skipped with the search step was successful.

- If there exists $d(t)\in D$ such that $\hat{f}(\hat{y}(t)+\alpha(t)d(t))<\hat{f}(\hat{y}(t))$ then
 - $\hat{y}(t+1) = \hat{y}(t) + \alpha(t)d(t)$ (success).
 - $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion)
- Otherwise, $\hat{f}(\hat{y}(t) + \alpha(t)d(t)) \geq \hat{f}(\hat{y}(t))$ para todo o $d(t) \in D$, and
- 5. Compute $v^{i}(t+1)$ and $x^{i}(t+1)$, i = 1, ..., s.
- 6. If $\alpha(t+1) < \alpha_{tol}$ and $||v^i(t+1)|| < v_{tol}$, for all $i = 1, \ldots, s$, then stop. Otherwise, t = t + 1 and go to Step 3.

э

4. [Poll Step]

The poll step is skipped with the search step was successful.

- If there exists $d(t)\in D$ such that $\hat{f}(\hat{y}(t)+\alpha(t)d(t))<\hat{f}(\hat{y}(t))$ then
 - $\hat{y}(t+1) = \hat{y}(t) + \alpha(t)d(t)$ (success).
 - $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion).

• Otherwise, $\hat{f}(\hat{y}(t) + \alpha(t)d(t)) \ge \hat{f}(\hat{y}(t))$ para todo o $d(t) \in D$, and $\hat{y}(t+1) = \hat{y}(t)$ (unsuccessful)

- 5. Compute $v^{i}(t+1)$ and $x^{i}(t+1)$, i = 1, ..., s.
- 6. If $\alpha(t+1) < \alpha_{tol}$ and $||v^i(t+1)|| < v_{tol}$, for all $i = 1, \ldots, s$, then stop. Otherwise, t = t + 1 and go to Step 3.

4. [Poll Step]

The poll step is skipped with the search step was successful.

- If there exists $d(t)\in D$ such that $\hat{f}(\hat{y}(t)+\alpha(t)d(t))<\hat{f}(\hat{y}(t))$ then
 - $\hat{y}(t+1) = \hat{y}(t) + \alpha(t)d(t)$ (success).
 - $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion).
- Otherwise, $\hat{f}(\hat{y}(t)+\alpha(t)d(t))\geq \hat{f}(\hat{y}(t))$ para todo o $d(t)\in D,$ and
 - $\hat{y}(t+1) = \hat{y}(t)$ (unsuccessful).
 - $\alpha(t+1) = \theta(t)\alpha(t)$ (contraction).
- 5. Compute $v^{i}(t+1)$ and $x^{i}(t+1)$, i = 1, ..., s.
- 6. If $\alpha(t+1) < \alpha_{tol}$ and $||v^i(t+1)|| < v_{tol}$, for all $i = 1, \dots, s$, then stop. Otherwise, t = t + 1 and go to Step 3.

イロト イポト イヨト イヨト

4. [Poll Step]

The poll step is skipped with the search step was successful.

- If there exists $d(t)\in D$ such that $\hat{f}(\hat{y}(t)+\alpha(t)d(t))<\hat{f}(\hat{y}(t))$ then
 - $\hat{y}(t+1) = \hat{y}(t) + \alpha(t)d(t)$ (success).
 - $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion).
- Otherwise, $\hat{f}(\hat{y}(t) + \alpha(t)d(t)) \geq \hat{f}(\hat{y}(t))$ para todo o $d(t) \in D$, and
 - $\hat{y}(t+1) = \hat{y}(t)$ (unsuccessful).
 - $\alpha(t+1) = \theta(t)\alpha(t)$ (contraction).
- 5. Compute $v^{i}(t+1)$ and $x^{i}(t+1)$, i = 1, ..., s.
- 6. If $\alpha(t+1) < \alpha_{tol}$ and $||v^i(t+1)|| < v_{tol}$, for all $i = 1, \dots, s$, then stop. Otherwise, t = t + 1 and go to Step 3.

イロト イポト イヨト イヨト

4. [Poll Step]

The poll step is skipped with the search step was successful.

- If there exists $d(t)\in D$ such that $\hat{f}(\hat{y}(t)+\alpha(t)d(t))<\hat{f}(\hat{y}(t))$ then
 - $\hat{y}(t+1) = \hat{y}(t) + \alpha(t)d(t)$ (success).
 - $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion).

• Otherwise, $\hat{f}(\hat{y}(t) + \alpha(t)d(t)) \geq \hat{f}(\hat{y}(t))$ para todo o $d(t) \in D$, and

- $\hat{y}(t+1) = \hat{y}(t)$ (unsuccessful).
- $\alpha(t+1) = \theta(t)\alpha(t)$ (contraction).
- 5. Compute $v^{i}(t+1)$ and $x^{i}(t+1)$, i = 1, ..., s.
- 6. If $\alpha(t+1) < \alpha_{tol}$ and $||v^i(t+1)|| < v_{tol}$, for all $i = 1, \ldots, s$, then stop. Otherwise, t = t + 1 and go to Step 3.

イロト イポト イヨト イヨト

- 3

4. [Poll Step]

The poll step is skipped with the search step was successful.

- If there exists $d(t)\in D$ such that $\hat{f}(\hat{y}(t)+\alpha(t)d(t))<\hat{f}(\hat{y}(t))$ then
 - $\hat{y}(t+1) = \hat{y}(t) + \alpha(t)d(t)$ (success).
 - $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion).
- Otherwise, $\hat{f}(\hat{y}(t)+\alpha(t)d(t))\geq \hat{f}(\hat{y}(t))$ para todo o $d(t)\in D,$ and
 - $\hat{y}(t+1) = \hat{y}(t)$ (unsuccessful).
 - $\alpha(t+1) = \theta(t)\alpha(t)$ (contraction).
- 5. Compute $v^{i}(t+1)$ and $x^{i}(t+1)$, i = 1, ..., s.

6. If $\alpha(t+1) < \alpha_{tol}$ and $||v^i(t+1)|| < v_{tol}$, for all i = 1, ..., s, then stop. Otherwise, t = t + 1 and go to Step 3.

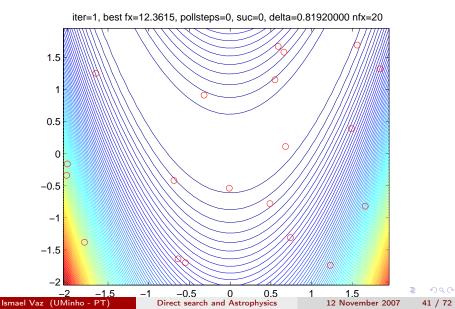
Ismael Vaz (UMinho - PT)

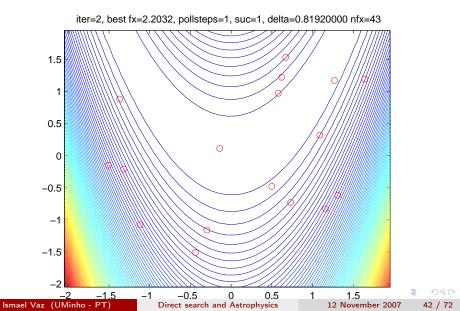
4. [Poll Step]

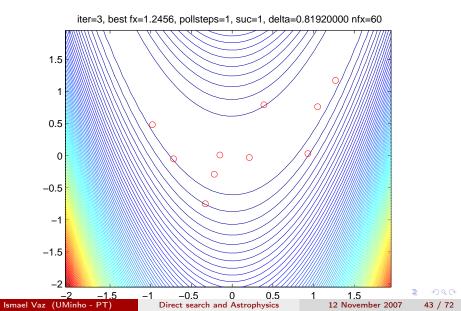
The poll step is skipped with the search step was successful.

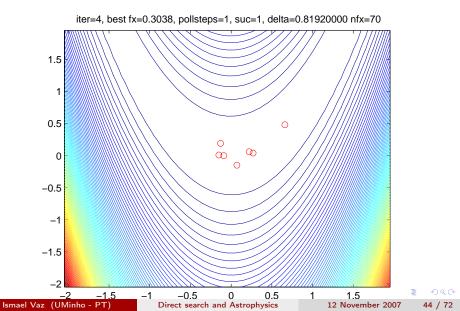
- If there exists $d(t)\in D$ such that $\hat{f}(\hat{y}(t)+\alpha(t)d(t))<\hat{f}(\hat{y}(t))$ then
 - $\hat{y}(t+1) = \hat{y}(t) + \alpha(t)d(t)$ (success).
 - $\alpha(t+1) = \phi(t)\alpha(t)$ (expansion).
- Otherwise, $\hat{f}(\hat{y}(t)+\alpha(t)d(t))\geq \hat{f}(\hat{y}(t))$ para todo o $d(t)\in D,$ and
 - $\hat{y}(t+1) = \hat{y}(t)$ (unsuccessful).
 - $\alpha(t+1) = \theta(t)\alpha(t)$ (contraction).
- 5. Compute $v^{i}(t+1)$ and $x^{i}(t+1)$, i = 1, ..., s.
- 6. If $\alpha(t+1) < \alpha_{tol}$ and $||v^i(t+1)|| < v_{tol}$, for all $i = 1, \ldots, s$, then stop. Otherwise, t = t + 1 and go to Step 3.

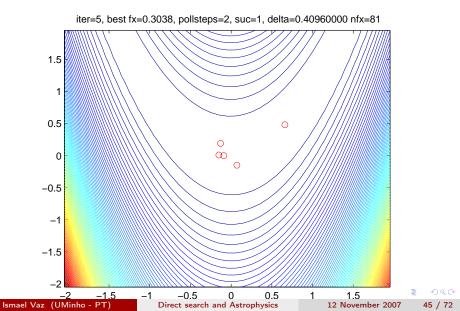
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○○○

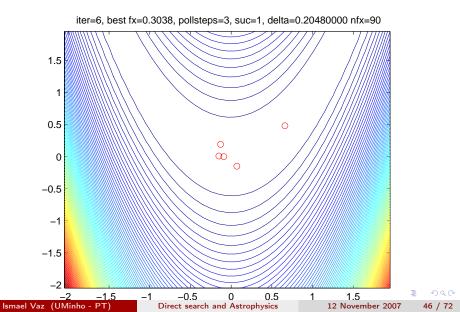


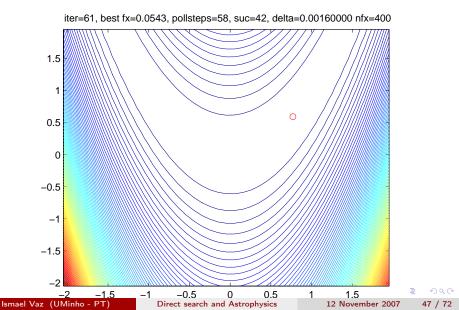


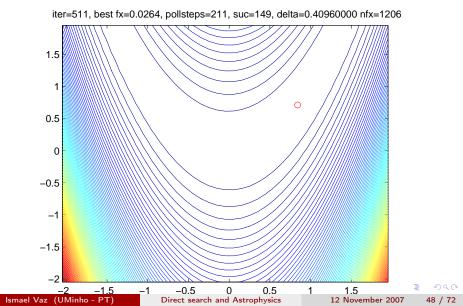


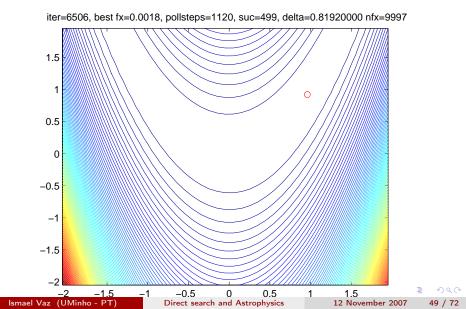












Global convergence

Theorem

Let $L(\hat{y}(0)) = \{z \in \mathbb{R}^n : f(z) \le f(\hat{y}(0))\}$ be a bounded set. Then, there exists a subsequence $\{\hat{y}(t_k)\}$ of the iterates produced by the hybrid algorithm (with $\alpha_{tol} = v_{tol} = 0$) such that

$$\lim_{k \to +\infty} \hat{y}(t_k) = \hat{y}_* \quad \text{and} \quad \lim_{k \to +\infty} \alpha(t_k) = 0,$$

for some $\hat{y}_* \in \Omega$ and such that the subsequence $\{t_k\}$ consists of unsuccessful iterations.

Convergence

Finite termination

Theorem

Suppose that for t sufficiently large one has that $\iota(t)$, $E(y^i(t))$, $i = 1, \ldots, s$, and $E(\hat{y}(t))$ are constant and that $E(proj_{M_{*}}(x^{i}(t-1)+v^{i}(t))) = E(x^{i}(t-1)+v^{i}(t)), i = 1, \dots, s.$ Then, for an appropriate choice of the control parameters for particle swarm,

$$\lim_{t \to +\infty} E(v_j^i(t)) = 0, \quad i = 1, \dots, s, \ j = 1, \dots, n.$$

and the hybrid algorithm will stop almost surely in a finite number of iterations.

Ismael Vaz (UMinho - PT)

Some considerations

Being the level set L(y(0)) bounded the strict decreasing sequences $\{f(y^i(t))\}, i = 1, \ldots, s$, and $\{f(\hat{y}(t))\}$ converge. Thus, it is reasonable to suppose that the expected values of $y^i(t)$, $i = 1, \ldots, s$, and $\hat{y}(t)$ also converge.

On the other hand, the difference between $proj_{M_t}(x^i(t-1) + v^i(t))$ and $x^i(t-1) + v^i(t)$ — and thus between their expected values — is a multiple of $\alpha(t)$ for some choices of D. This situation occurs in coordinate search, where $D = D_{\oplus}$. Since there is a subsequence of the mesh size parameters that converges to zero, there is at least the guarantee that the expected difference between $x^i(t-1) + v^i(t)$ and its projection onto M_t converges to zero in that subsequence.

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

Outline

Introduction

- 2 Particle swarm
- 3 Coordinate search
- 4 The hybrid algorithm

5 Numerical results with a set of test problems

• 122 problems were collected from the global optimization literature.

- 12 problems of large dimension (between 100 and 300 variables). The others are small (< 10) and medium size (< 30).
- Majority of objective functions are differentiable, but non-convex.
- All problems have simple bounds on the variables (needed for the search step particle swarm).
- The test problems were coded in AMPL (*A Modeling Language for Mathematical Programming*).

• Test problems available on http://www.norg.uminho.pt/aivaz (under *software*).

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

12 November 2007

54 / 72

(日) (同) (目) (日)

- 122 problems were collected from the global optimization literature.
- 12 problems of large dimension (between 100 and 300 variables). The others are small (< 10) and medium size (< 30).
- Majority of objective functions are differentiable, but non-convex.
- All problems have simple bounds on the variables (needed for the search step particle swarm).
- The test problems were coded in AMPL (*A Modeling Language for Mathematical Programming*).

• Test problems available on http://www.norg.uminho.pt/aivaz (under *software*).

Ismael Vaz (UMinho - PT)

(日) (同) (三) (三)

- 122 problems were collected from the global optimization literature.
- 12 problems of large dimension (between 100 and 300 variables). The others are small (< 10) and medium size (< 30).
- Majority of objective functions are differentiable, but non-convex.
- All problems have simple bounds on the variables (needed for the search step particle swarm).
- The test problems were coded in AMPL (*A Modeling Language for Mathematical Programming*).

• Test problems available on http://www.norg.uminho.pt/aivaz (under *software*).

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

12 November 2007

54 / 72

- 122 problems were collected from the global optimization literature.
- 12 problems of large dimension (between 100 and 300 variables). The others are small (< 10) and medium size (< 30).
- Majority of objective functions are differentiable, but non-convex.
- All problems have simple bounds on the variables (needed for the search step particle swarm).
- The test problems were coded in AMPL (*A Modeling Language for Mathematical Programming*).
- Test problems available on http://www.norg.uminho.pt/aivaz (under *software*).

Ismael Vaz (UMinho - PT)

- 122 problems were collected from the global optimization literature.
- 12 problems of large dimension (between 100 and 300 variables). The others are small (< 10) and medium size (< 30).
- Majority of objective functions are differentiable, but non-convex.
- All problems have simple bounds on the variables (needed for the search step particle swarm).
- The test problems were coded in AMPL (A Modeling Language for Mathematical Programming).
- Test problems available on http://www.norg.uminho.pt/aivaz (under *software*).

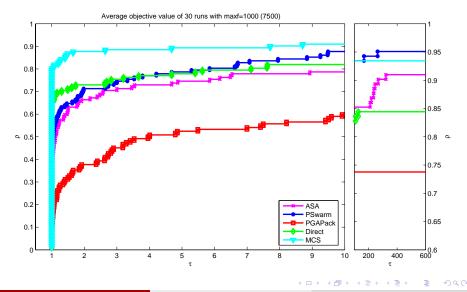
Ismael Vaz (UMinho - PT)

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

- 122 problems were collected from the global optimization literature.
- 12 problems of large dimension (between 100 and 300 variables). The others are small (< 10) and medium size (< 30).
- Majority of objective functions are differentiable, but non-convex.
- All problems have simple bounds on the variables (needed for the search step particle swarm).
- The test problems were coded in AMPL (A Modeling Language for Mathematical Programming).
- Test problems available on http://www.norg.uminho.pt/aivaz (under *software*).

Ismael Vaz (UMinho - PT)

Average objective value

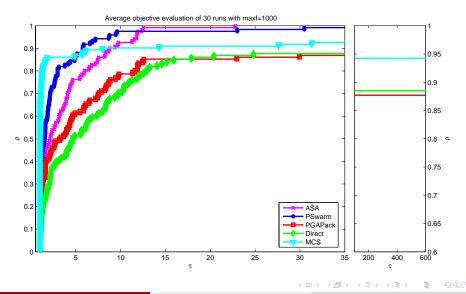


Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

12 November 2007

Average of objective function evaluations



Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

12 November 2007

Average number of objective function evaluations

maxf	ASA	PGAPack	PSwarm	Direct	MCS
1000	857	1009*	686	1107*	1837*
10000	5047	10009*	3603	11517*	4469

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

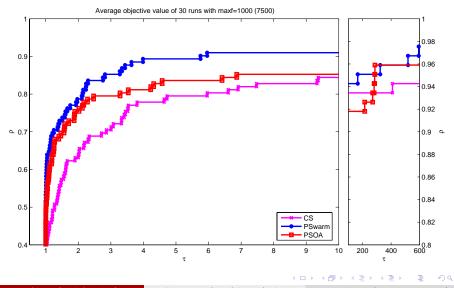
12 November 2007

< □ > < □ > < □ > < □ > < □ > < □ >

57 / 72

3

Coordinate search vs Particle swarm vs PSwarm



Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

12 November 2007

Outline

Introduction

- 2 Particle swarm
- 3 Coordinate search
- 4 The hybrid algorithm
- 5 Numerical results with a set of test problems

6 Parameter estimation in Astrophysics

э

59 / 72

Objective

To determine a set of stellar parameters (that define the star internal structure and evolution) from observable information.

Objective

To determine a set of stellar parameters (that define the star internal structure and evolution) from observable information.

Set of parameters to be determined

Ismael Vaz (UMinho - PT)

・ロト ・ 同ト ・ ヨト ・ ヨ

Objective

To determine a set of stellar parameters (that define the star internal structure and evolution) from observable information.

Set of parameters to be determined

- M stellar mass (relative to Sun mass M_{\odot}).

Ismael Vaz (UMinho - PT)

イロト イポト イヨト イヨト

Objective

To determine a set of stellar parameters (that define the star internal structure and evolution) from observable information.

Set of parameters to be determined

- M stellar mass (relative to Sun mass M_{\odot}).
- X abundance of hydrogen (%).

Ismael Vaz (UMinho - PT)

(日) (周) (日) (日)

э

Objective

To determine a set of stellar parameters (that define the star internal structure and evolution) from observable information.

Set of parameters to be determined

- M stellar mass (relative to Sun mass M_{\odot}).
- X abundance of hydrogen (%).
- Y abundance of helium (%).

(日) (同) (三) (三)

3

Definitions

The problem

Objective

To determine a set of stellar parameters (that define the star internal structure and evolution) from observable information.

Set of parameters to be determined

- M stellar mass (relative to Sun mass M_{\odot}).
- X abundance of hydrogen (%).
- Y abundance of helium (%).
- Z abundance of other elements (Z = 100% X Y).

- 20

Definitions

The problem

Objective

To determine a set of stellar parameters (that define the star internal structure and evolution) from observable information.

Set of parameters to be determined

- M stellar mass (relative to Sun mass M_{\odot}).
- X abundance of hydrogen (%).
- Y abundance of helium (%).
- Z abundance of other elements (Z = 100% X Y).
- t star age (in Gyr = 1000 million years).

- 3

Objective

To determine a set of stellar parameters (that define the star internal structure and evolution) from observable information.

Set of parameters to be determined

- M stellar mass (relative to Sun mass M_{\odot}).
- X abundance of hydrogen (%).
- Y abundance of helium (%).
- Z abundance of other elements (Z = 100% X Y).
- t star age (in Gyr = 1000 million years).
- two other parameters.

イロト イポト イヨト イヨト

- 20

Observable data from spectrum analysis

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

12 November 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Definitions

The problem

Observable data from spectrum analysis

- t_{eff} stellar surface temperature.

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

12 November 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Definitions

The problem

Observable data from spectrum analysis

- t_{eff} stellar surface temperature.
- lum total stellar luminosity.

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

12 November 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Observable data from spectrum analysis

- t_{eff} stellar surface temperature.
- *lum* total stellar luminosity.
- $\left(\frac{Z}{X}\right)$ relation between the abundance of other elements and hydrogen.

• g — surface gravity (less accurate).

Parameters and observable data for Sun

M = 1 and t = 4.6Gyr, with $t_{eff} = 5777$, lum = 1 and Z/X = 0.0245.

This information is only available for Sun.

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

The problem

Observable data from spectrum analysis

- t_{eff} stellar surface temperature.
- lum total stellar luminosity.
- $\left(\frac{Z}{X}\right)$ relation between the abundance of other elements and hydrogen.
- g surface gravity (less accurate).

Parameters and observable data for Sun

M = 1 and t = 4.6Gyr, with $t_{eff} = 5777$, lum = 1 and Z/X = 0.0245.

This information is only available for Sun.

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

The problem

Observable data from spectrum analysis

- t_{eff} stellar surface temperature.
- lum total stellar luminosity.
- $\left(\frac{Z}{X}\right)$ relation between the abundance of other elements and hydrogen.
- g surface gravity (less accurate).

Parameters and observable data for Sun M = 1 and t = 4.6Gyr, with $t_{eff} = 5777$, lum = 1 and Z/X = 0.0245.

This information is only available for Sun.

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

The optimization problem

The optimization problem

$$\min_{M,t,X,Y} \left(\frac{t_{eff} - t_{eff,obs}}{\delta t_{eff,obs}}\right)^2 + \left(\frac{lum - lum_{obs}}{\delta lum_{obs}}\right)^2 + \left(\frac{\frac{1 - X - Y}{X} - \left(\frac{Z}{X}\right)_{obs}}{\delta \left(\frac{Z}{X}\right)_{obs}}\right)^2 + \left(\frac{g - g_{obs}}{\delta g_{obs}}\right)^2$$

Given M, t, fixing X, Y, and the two other parameters the parameters t_{eff} , lum and g are computed by simulating (CESAM code) a system of differentiable equations.

The equations of internal structure are five: conservation of mass and energy, hydrostatic equilibrium, energy transport, production and destruction of chemical elements by thermonuclear reactions.

The optimization problem

The optimization problem

$$\min_{M,t,X,Y} \left(\frac{t_{eff} - t_{eff,obs}}{\delta t_{eff,obs}}\right)^2 + \left(\frac{lum - lum_{obs}}{\delta lum_{obs}}\right)^2 + \left(\frac{\frac{1 - X - Y}{X} - \left(\frac{Z}{X}\right)_{obs}}{\delta\left(\frac{Z}{X}\right)_{obs}}\right)^2 + \left(\frac{g - g_{obs}}{\delta g_{obs}}\right)^2$$

Given M, t, fixing X, Y, and the two other parameters the parameters t_{eff} , lum and g are computed by simulating (CESAM code) a system of differentiable equations.

The equations of internal structure are five: conservation of mass and energy, hydrostatic equilibrium, energy transport, production and destruction of chemical elements by thermonuclear reactions.

The optimization problem

The optimization problem

$$\min_{M,t,X,Y} \left(\frac{t_{eff} - t_{eff,obs}}{\delta t_{eff,obs}}\right)^2 + \left(\frac{lum - lum_{obs}}{\delta lum_{obs}}\right)^2 + \left(\frac{\frac{1 - X - Y}{X} - \left(\frac{Z}{X}\right)_{obs}}{\delta\left(\frac{Z}{X}\right)_{obs}}\right)^2 + \left(\frac{g - g_{obs}}{\delta g_{obs}}\right)^2$$

Given M, t, fixing X, Y, and the two other parameters the parameters t_{eff} , lum and g are computed by simulating (CESAM code) a system of differentiable equations.

The equations of internal structure are five: conservation of mass and energy, hydrostatic equilibrium, energy transport, production and destruction of chemical elements by thermonuclear reactions.

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

12 November 2007

62 / 72

Getting t_{eff} , lum and g – CESAM

 $t_{eff},\,lum$ and g are computed by CESAM (Fortran 77 code), which is viewed as a black box function for the optimization process.

Optimization solver - PSwarm

PSwarm (C code). Solver used with default options.

Linking PSwarm and CESAM

Optimization solver communicates with CESAM by input and output files.

Getting t_{eff} , lum and g - CESAM

 t_{eff} , lum and g are computed by CESAM (Fortran 77 code), which is viewed as a black box function for the optimization process.

Optimization solver - PSwarm

PSwarm (C code). Solver used with default options.

Linking PSwarm and CESAM

Optimization solver communicates with CESAM by input and output files.

Getting t_{eff} , lum and g - CESAM

 t_{eff} , lum and g are computed by CESAM (Fortran 77 code), which is viewed as a black box function for the optimization process.

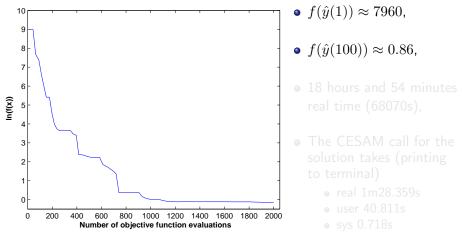
Optimization solver - PSwarm

PSwarm (C code). Solver used with default options.

Linking PSwarm and CESAM

Optimization solver communicates with CESAM by input and output files.

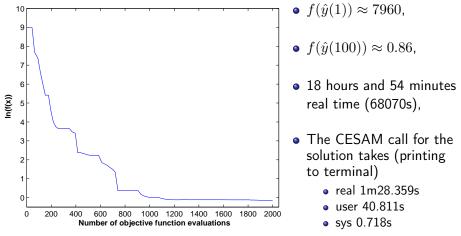
Numerical results - DH37124 star



Solution: M = 0.81, t = 5.48, X = 0.66, Y = 0.33, a = 0.81, ov = 0.48

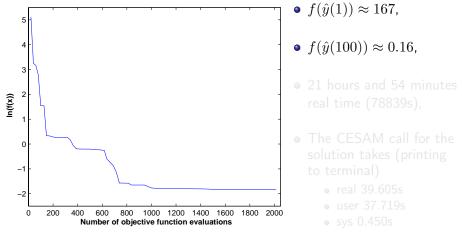
(日) (周) (日) (日)

Numerical results - DH37124 star



Solution: M = 0.81, t = 5.48, X = 0.66, Y = 0.33, a = 0.81, ov = 0.48

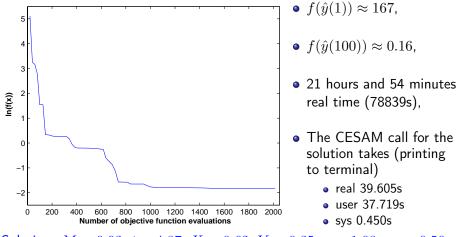
Numerical results - HD46375 star



Solution: M = 0.93, t = 4.87, X = 0.62, Y = 0.35, a = 1.08, ov = 0.50

(日) (周) (日) (日)

Numerical results - HD46375 star



Solution: M = 0.93, t = 4.87, X = 0.62, Y = 0.35, a = 1.08, ov = 0.50

4 E N 4 E N

э

Parallel approach

- Each objective function evaluation takes around 1 minute to compute (on a desktop computer). One day for a full algorithm run (serial).
- We tested 5 fake stars (in order to validate the approach) and 10 real stars.
- For each star we performed 28 runs. (28*15=420 days!).
- A parallel version was implemented using MPI-2. The Centopeia (University of Coimbra) and SeARCH (University of Minho) parallel platforms were used to obtain the numerical results.
- About one day for 10 runs (parallel in 8 processors) 42 particles with a maximum of 2000 o.f. evaluations.

Parallel approach

- Each objective function evaluation takes around 1 minute to compute (on a desktop computer). One day for a full algorithm run (serial).
- We tested 5 fake stars (in order to validate the approach) and 10 real stars.
- For each star we performed 28 runs. (28*15=420 days!).
- A parallel version was implemented using MPI-2. The Centopeia (University of Coimbra) and SeARCH (University of Minho) parallel platforms were used to obtain the numerical results.
- About one day for 10 runs (parallel in 8 processors) 42 particles with a maximum of 2000 o.f. evaluations.

(日) (四) (日) (日) (日)

Parallel approach

- Each objective function evaluation takes around 1 minute to compute (on a desktop computer). One day for a full algorithm run (serial).
- We tested 5 fake stars (in order to validate the approach) and 10 real stars.
- For each star we performed 28 runs. (28*15=420 days!).
- A parallel version was implemented using MPI-2. The Centopeia (University of Coimbra) and SeARCH (University of Minho) parallel platforms were used to obtain the numerical results.
- About one day for 10 runs (parallel in 8 processors) 42 particles with a maximum of 2000 o.f. evaluations.

(日) (周) (日) (日)

Parallel approach

- Each objective function evaluation takes around 1 minute to compute (on a desktop computer). One day for a full algorithm run (serial).
- We tested 5 fake stars (in order to validate the approach) and 10 real stars.
- For each star we performed 28 runs. (28*15=420 days!).
- A parallel version was implemented using MPI-2. The Centopeia (University of Coimbra) and SeARCH (University of Minho) parallel platforms were used to obtain the numerical results.
- About one day for 10 runs (parallel in 8 processors) 42 particles with a maximum of 2000 o.f. evaluations.

(日) (同) (三) (三)

э

Parallel approach

- Each objective function evaluation takes around 1 minute to compute (on a desktop computer). One day for a full algorithm run (serial).
- We tested 5 fake stars (in order to validate the approach) and 10 real stars.
- For each star we performed 28 runs. (28*15=420 days!).
- A parallel version was implemented using MPI-2. The Centopeia (University of Coimbra) and SeARCH (University of Minho) parallel platforms were used to obtain the numerical results.

• About one day for 10 runs (parallel in 8 processors) — 42 particles with a maximum of 2000 o.f. evaluations.

Ismael Vaz (UMinho - PT)

Parallel approach

- Each objective function evaluation takes around 1 minute to compute (on a desktop computer). One day for a full algorithm run (serial).
- We tested 5 fake stars (in order to validate the approach) and 10 real stars.
- For each star we performed 28 runs. (28*15=420 days!).
- A parallel version was implemented using MPI-2. The Centopeia (University of Coimbra) and SeARCH (University of Minho) parallel platforms were used to obtain the numerical results.
- About one day for 10 runs (parallel in 8 processors) 42 particles with a maximum of 2000 o.f. evaluations.

イロト イポト イヨト イヨト

Average obtained results (in Red) <i>vs</i> the real data.											
Star	M	t (Myr)	X	Y	α	ov	o.f. (average)				
Sun	1.00	4600	0.715	0.268	1.63	0.00					
Sun	0.96	4691	0.68	0.31	1.55	0.265	0.272511931				
fake1	0.85	1600	0.70	0.29	1.9	0.0					
fake1	0.84	2989	0.69	0.30	2.0	0.36	0.846046483				
fake2	1.30	850	0.72	0.25	1.0	0.25					
fake2	1.20	4403	0.70	0.27	1.27	0.33	0.250562107				
fake3	1.00	5000	0.68	0.30	0.7	0.15					
fake3	1.00	5499	0.68	0.30	0.72	0.28	0.209947500				
fake4	0.70	5000	0.66	0.33	2.0	0.0					
fake4	0.71	3786	0.66	0.33	2.0	0.26	0.040181857				
fake5	1.10	2500	0.62	0.36	1.4	0.3					
fake5	1.10	2956	0.62	0.36	1.57	0.22	0.232024714				

. .

Ismael Vaz (UMinho - PT)

イロン 不聞と 不同と 不同と

Star	M	t (Myr)	X	Y	α	ov	o.f. (average)		
hd10002	0.87	5455	0.62	0.35	1.39	0.22	0.454073286		
hd11226	1.12	3524	0.67	0.30	1.63	0.29	1.449135786		
hd19994	1.28	2539	0.63	0.34	1.37	0.22	1.242964393		
hd30177	1.02	5381	0.62	0.34	1.48	0.23	0.215747107		
hd39833	1.24	1787	0.74	0.23	2.18	0.36	4.535001821		
hd40979	1.08	3286	0.63	0.35	1.76	0.26	0.083869821		
hd72659	1.18	4064	0.71	0.27	1.47	0.28	0.905840517		
hd74868	1.26	2081	0.64	0.33	1.74	0.28	0.310089143		
hd76700	1.15	4964	0.64	0.32	1.64	0.28	0.303584679		
hd117618	1.09	4248	0.69	0.29	1.72	0.30	0.581501536		

Average obtained results for real stars.

Ismael Vaz (UMinho - PT)

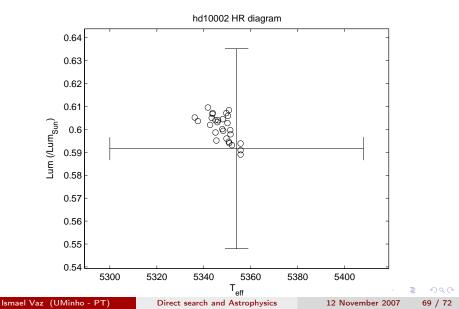
12 November 2007

イロト イポト イヨト イヨト

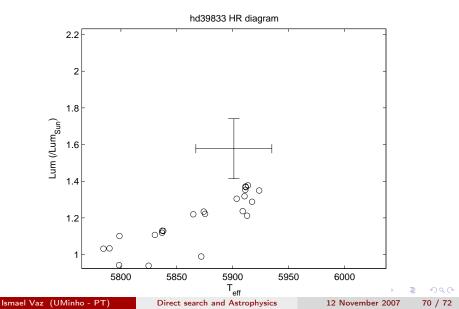
68 / 72

э

HR diagram with hd10002



HR diagram with hd39833



Future (present) work

Future (present) work

- Extend PSwarm to more general constrained optimization problems. Write a MATLAB code.
- Solve a range of astrophysics parameter estimation problems related to a number of different stars.

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

12 November 2007

э

71 / 72

< □ > < □ > < □ > < □ > < □ > < □ >

Future (present) work

Future (present) work

- Extend PSwarm to more general constrained optimization problems. Write a MATLAB code.
- Solve a range of astrophysics parameter estimation problems related to a number of different stars.

Ismael Vaz (UMinho - PT)

The end

The end

email: aivaz@dps.uminho.pt Web http://www.norg.uminho.pt/aivaz

Ismael Vaz (UMinho - PT)

Direct search and Astrophysics

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

72 / 72

э