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Motivation

● A great number of valuable products are produced using
fermentation processes and thus optimizing such processes
is of great economic importance.

● Fermentation modeling process involves, in general, highly
nonlinear and complex differential equations.

● Often optimizing these processes results in control
optimization problems for which an analytical solution is not
possible.
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The control problem

● The optimal control problem is described by a set of
differential equations ẋ = f(x, u, t), x(t0) = x0, t0 ≤ t ≤ tf .

● The performance index J can be generally stated as

J(tf ) = ϕ(x(tf ), tf ) +

∫ tf

t0

φ(x, u, t)dt,

where ϕ is the performance index of the state variables at
final time tf and φ is the integrated performance index during
the operation.

● constraints that often reflet some physical limitation of the
system are imposed.
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The control problem

The general maximization problem (P ) can be posed as

max J(tf ) (1)

s.t. ẋ = f(x, u, t) (2)

x ≤ x(t) ≤ x, (3)

u ≤ u(t) ≤ u, (4)

∀t ∈ [t0, tf ] (5)

Where the state constraints (3) and control constraints (4) are to
be understood as componentwise inequalities.
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The control problem

The general maximization problem (P ) can be posed as

max J(tf ) (1)

s.t. ẋ = f(x, u, t) (2)

x ≤ x(t) ≤ x, (3)

u ≤ u(t) ≤ u, (4)

∀t ∈ [t0, tf ] (5)

Where the state constraints (3) and control constraints (4) are to
be understood as componentwise inequalities.

How we addressed problem (P)?
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Approach

● Imposing the penalty function for state constraints results in
redefining the objective function as

Ĵ(tf ) =

{

J(tf ) if x ≤ x(t) ≤ x, ∀t ∈ [t0, tf ]

−∞ otherwise

● We will use a linear interpolating function w(t) (linear spline)
to approximate the feeding trajectory function u(t).
The spline segment wi(t), i = 1, . . . , n, is defined as:

wi(t) = ui−1+(ui−ui−1)(t−ti−1)/(ti−ti−1), for t ∈ [ti−1, ti].

where ti, i = 0, . . . , n, are the time instants and
ui−1 = u(ti−1).
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Nonlinear programming (NLP)

The semi-infinite programming problem is then defined as:

max Ĵ(tf )

s.t. ẋ = f(x, w, t)

u ≤ w(t) ≤ u.

and by using the optimality conditions the SIP is redefine as
the following nonlinear programming problem.
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Nonlinear programming (NLP)

The semi-infinite programming problem is then defined as:

max Ĵ(tf )

s.t. ẋ = f(x, w, t)

u ≤ w(t) ≤ u.

and by using the optimality conditions the SIP is redefine as
the following nonlinear programming problem.

max
u∈Rn+1

Ĵ(tf )

s.t. ẋ = f(x, w, t)

u ≤ u(ti) ≤ u, i = 1, . . . , n.
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Nonlinear optimization

● u(ti) are variables to be optimized.
● The initial dynamic system conditions (x(t0)) can be

considered as variable.
● h ∈ Rn+1 and tf can also be considered as variables to be

optimized. hi = ti − ti−1, i = 1, . . . , n.
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Nonlinear optimization

● u(ti) are variables to be optimized.
● The initial dynamic system conditions (x(t0)) can be

considered as variable.
● h ∈ Rn+1 and tf can also be considered as variables to be

optimized. hi = ti − ti−1, i = 1, . . . , n.

w(t) is not differentiable and we will apply a derivative free
algorithm.

Global optimum is most desirable and we will apply a
stochastic algorithm.
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The Particle Swarm Paradigm (PSP)

The PSP is a population (swarm) based algorithm that mimics
the social behavior of a set of individuals (particles).

An individual behavior is a combination of its past experience
(cognition influence) and the society experience (social
influence).

In the optimization context a particle p, at time instant k, is
represented by its current position (up(k)), its best ever
position (yp(k)) and its travelling velocity (vp(k)).
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The new travel position and velocity

The new particle position is updated by

up(k + 1) = up(k) + vp(k + 1),

where vp(k + 1) is the new velocity given by

vp
j (k+1) = ι(k)vp

j (k)+µω1j(k)
(

yp
j (k) − up

j (k)
)

+νω2j(k)
(

ŷj(k) − up
j (k)

)

for j = 1, . . . , n.

● ι(k) is a weighting factor (inertial)
● µ is the cognition parameter and ν is the social parameter
● ω1j(k) and ω2j(k) are random numbers drawn from the

uniform (0, 1) distribution.
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The best ever particle

ŷ(k) is a particle position with global best function value so far,
i.e.,

ŷ(k) = arg min
a∈A

f(a)

A =
{

y1(k), . . . , ys(k)
}

.

where s is the number of particles in the swarm.
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The best ever particle

ŷ(k) is a particle position with global best function value so far,
i.e.,

ŷ(k) = arg min
a∈A

f(a)

A =
{

y1(k), . . . , ys(k)
}

.

where s is the number of particles in the swarm.

In an algorithmic point of view we just have to keep track of the
particle with the best ever function value.
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Features

Population based algorithm.
1. Good

(a) Easy to implement.
(b) Easy to parallelize.
(c) Easy to handle discrete variables.
(d) Only uses objective function evaluations.

2. Not so good
(a) Slow rate of convergence near an optimum.
(b) Quite large number of function evaluations.
(c) In the presence of several global optima the algorithm

may not converge.
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Modeling language - AMPL

AMPL is a modeling language for mathematical programming.

www.ampl.com

AMPL is commercial software, but a student edition is freely
available.

The possibility to load an external dynamic library is exploited
in this paper in order to solve ordinary differential equations.

A short example is presented next regarding the external
function chemotherapy.
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Example

function chemotherapy; # external function to be called

param Tumor_mass := log(100); # Tumor cells N=10^12*exp(-x1)

param Drug := 0; # Drug concentration in the body

param Cumulative := 0; # Cumulative effect of the drug

param n := 4; # Number of times displacements (knots-1)

param h{1..n} := 21; # Time displacements, could be variables.

var u{1..n+1}; # Spline knots

maximize obj: # maximize objective function

chemotherapy(0, n, {i in 1..n} h[i], {i in 1..n+1} u[i],

Tumor_mass, Drug, Cumulative);

subject to hbounds {i in 1..n}: # constraints on time instants

1<= h[i] <= 100; # AMPL just checks for correctness

subject to ubounds {i in 1..n+1}: # constraints on drug delivery

0.01<= u[i] <= 50; # problem constraints

option solver mlocpsoa; # mlocpsoa solver

option mlocpsoa_options ’mlocal=0 size=60 maxiter=1000’;

# global search, population size of 60, maximum of 1000 iterations

solve; # solve problem
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Additional constraints

Additional constraints can easily be incorporated into the
model. If, for example, a constraint in the total allowed glucose
addition (tG) is to be imposed, the constraint

n−1
∑

i=0

hi+1(ui + ui+1)/2 ≤ tG

can easily be considered in the model file by adding
subject to totalfeed:

sum {i in 0..n-1} (h[i+1]*(u[i]+u[i+1])/2)<=t_G;

and to properly define the t_G parameter.
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Some details

● The ordinary differential equations are solved by calling the
CVODE package where the Newton iteration with the
CVDiag module was selected.

● At each call to the chemotherapy function the linear spline
is computed with the provided data and the objective function
value is returned. The objective function expression is
therefore coded in the external library.

● MLOCPSOA stands for Multi-LOCal Particle Swarm
Optimization Algorithm.

● MLOCPSOA provides an interface to AMPL, allowing
problems to be easily coded and solved in this modeling
language.

● The NLOCPSOA allows a wide variety of algorithm
parameters to be set. The used parameters are size for the
population size (defaults to min(6n, 1000)), maxiter for the
maximum allowed iterations (defaults to 2000) and mlocal
for multi-local search (defaults to 0 – global search instead of
multi-local search).
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Numerical results
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Parameters

● Numerical results were obtained for the five case studies of
fed-batch fermentation processes.

● The time displacements were kept fixed and the best control
feeding trajectory was approximated by computing the knots
function value.

● MLOCPSOA solver used a population size of 60 and a
maximum of 1000 iterations (reaching a maximum of 60000
function evaluations).

● Since MLOCPSOA is a stochastic algorithm we performed
10 solver runs for each problem and the best solutions
obtained are report.
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Results

MLOCPSOA Previous

Problem NT n Ĵ(tf ) tf Ĵ(tf ) tf

penicillin [1] 1 5 88.29 132.00 87.99 132.00

ethanol [1] 1 5 20379.50 61.20 20839.00 61.17

chemotherapy [1] 1 4 16.83 84.00 17.48 84.00

hprotein [2] 1 5 32.73 15.00 32.40 15.00

rprotein [3] 2 5 0.12 10.00 0.16 10.00

[1] J.R. Banga, E.Balsa-Canto, C.G. Moles, and A.A. Alonso. Dynamic optimization of
bioprocesses: Efficient and robust numerical strategies. Journal of Biotechnology,

117:407–419, 2005.
[2] S. Park and W.F. Ramirez. Optimal production of secreted protein in fed-batch

reactors. AIChE Journal, 34(9):1550–1558, 1988.
[3] J. Lee and W.F. Ramirez. Optimal fed-batch control of induced foreign

protein-production by recombinant bacteria. AIChE Journal, 40(5):899–907, 1994.
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Results

By allowing the spline displacements to be variable and using the objective
function J̄(tf , h) = (Ĵ(tf ))/(

∑n

i=1
hi) we can easily compute the profile with the

best ratio per unit time.

Fixed time Variable time

Problem Ĵ(tf ) tf J̄(tf ) Ĵ(tf ) tf hmax
i

penicillin 88.29 132.00 0.92 76.16 83.20 60

ethanol 20229.50 61.20 604.20 14417.50 23.86 20

chemotherapy 16.83 84.00 0.70 8.06 11.52 25

hprotein 32.73 15.00 17.57 439.18 25 5

rprotein 0.12 10.00 2.38 59.61 25 5

With the additional constraints 0.01 ≤ hi ≤ hmax
i , i = 1, . . . , n.
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Conclusions and future work

● We have shown an environment for solving optimal control
problems

● We applied the Particle Swarm paradigm to optimal control
problems

● The Particle Swarm paradigm proved to be a valuable tool in
solving these optimal control problems
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Conclusions and future work

● We have shown an environment for solving optimal control
problems

● We applied the Particle Swarm paradigm to optimal control
problems

● The Particle Swarm paradigm proved to be a valuable tool in
solving these optimal control problems

As a future research we intend to use cubic splines instead of
linear splines to approximate the trajectories.
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The End

email: aivaz@dps.uminho.pt

Web http://www.norg.uminho.pt/aivaz

email: ecferreira@deb.uminho.pt

Web http://www.deb.uminho.pt/ecferreira



Case studies
❖ Penicillin
❖ Ethanol
❖ Chemotherapy
❖ Protein(h)
❖ Protein(r)

A. Ismael F. Vaz and Eugénio C. Ferreira XXIX Congreso Nacional de Estadística e Investigación Operativa, Tenerife, 15-19 May, 2006 - p. 26/31

Case studies



Case studies
❖ Penicillin
❖ Ethanol
❖ Chemotherapy
❖ Protein(h)
❖ Protein(r)

A. Ismael F. Vaz and Eugénio C. Ferreira XXIX Congreso Nacional de Estadística e Investigación Operativa, Tenerife, 15-19 May, 2006 - p. 27/31

Fed-batch fermentor for penicillin

The optimization problem (in (P) formulation) is:

max
u(t)

J(tf ) ≡ x2(tf )x4(tf )

s.t. ẋ1 = h1x1 − ux1/(500x4), ẋ2 = h2x1 − 0.01x2 − ux2/(500x4)

ẋ3 = −(h1x1)/0.47 − h2x1/1.2 − 0.029x1x3/(0.0001 + x3)+

+ u(1 − x3/500)/x4, ẋ4 = u/500

0 ≤ x1(t) ≤ 40, 0 ≤ x3(t) ≤ 25, 0 ≤ x4(t) ≤ 10, 0 ≤ u(t) ≤ 50,

∀t ∈ [t0, tf ]

with

h1 = 0.11(x3/(0.006x1 + x3)) and h2 = 0.0055(x3/(0.0001 + x3(1 + 10x3))

where x1, x2 and x3 are the biomass, penicillin and substrate
concentrations (g/L), and x4 is the volume (L). The initial conditions

are x(t0) = (1.5, 0, 0, 7)T .
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Fed-batch reactor for ethanol production

The optimization problem is:

max
u(t)

J(tf ) ≡ x3(tf )x4(tf )

s.t. ẋ1 = g1x1 − ux1/x4, ẋ2 = −10g1x1 + u(150 − x2)/x4, ẋ4 = u

ẋ3 = g2x1 − ux3/x4, 0 ≤ x4(tf ) ≤ 200, 0 ≤ u(t) ≤ 12, ∀t ∈ [t0, tf ]

with

g1 = (0.408/(1 + x3/16))(x2/(0.22 + x2))

g2 = (1/(1 + x3/71.5))(x2/(0.44 + x2))

where x1, x2 and x3 are the cell mass, substrate and product
concentrations (g/L), and x4 is the volume (L). The initial conditions

are x(t0) = (1, 150, 0, 10)T .
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Drug scheduling for cancer chemotherapy

The optimization problem is:

max
u(t)

J(tf ) ≡ x1(tf )

s.t. ẋ1 = −k1x1 + k2(x2 − k3) × H{x2 − k3}

ẋ2 = u − k4x2, ẋ3 = x2

x2(t) ≤ 50 x3(t) ≤ 2.1 × 103, 0 ≤ u(t), ∀t ∈ [t0, tf ]

with H{x2 − k3} = 1 if x2 ≥ k3 and H{x2 − k3} = 0 if x2 < k3, where

the tumor mass cells is given by N = 1012 × exp(−x1), x2 is the drug
concentration in the body in drug units [D] and x3 is the cumulative

effect of the drug. The parameters are: k1 = 9.9 × 10−4days,
k2 = 8.4 × 10−3days−1[D−1], k3 = 10[D−1] and k4 = 0.27days−1. The

initial conditions are x(t0) = (ln(100), 0, 0)T .
Some extra constraints are imposed as there should be at least a 50%

reduction in the size of the tumor every three weeks. The treatment
period considered is 84 days and therefore the extra constraints are

x1(21) ≥ ln(200), x1(42) ≥ ln(400) and x1(63) ≥ ln(800).
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Fed-batch bioreactor for protein production

The optimization problem is:

max
u(t)

J(tf ) ≡ x4(tf )x5(tf )

s.t. ẋ1 = µx1 − Dx1, ẋ2 = −7.3µx1 − D(x2 − x0
2)

ẋ3 = fP x1 − Dx3, ẋ4 = χ(x3 − x4) − Dx4, ẋ5 = u

0 ≤ u(t) ≤ 10, ∀t ∈ [t0, tf ]

with

µ = 21.87x2/((x2 + 0.4)(x2 + 62.5)), fP = x2exp(−5x2)/(x2 + 0.1)

χ = 4.75µ/(0.12 + µ), D = u/x5

where x1, x2, x3 and x4 are the biomass, glucose, total protein and

secreted protein concentrations (g/L), and x5 is the volume (L). The
parameter x0

2 is 20g/L and the initial conditions are

x(t0) = (1.0, 5.0, 0.0, 0.0, 1.0)T .
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Fed-batch fermentation for protein

The optimization problem is:

max
u(t)

J(tf ) ≡ x3(tf )x7(tf )/Q−

Z tf

t0

u2(τ)xF
4 dτ

s.t. ẋ1 = µx1 −Dx1, ẋ2 = −Y −1µx1 −Dx2 + u1x
F
2 /x7

ẋ3 = Rfpx1 −Dx3, ẋ4 = −Dx4 + u2x
F
4 /x7

ẋ5 = −a1x5, ẋ6 = a2(1 − x6), ẋ7 = u1 + u2

0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1, ∀t ∈ [t0, tf ]

with

µ = 0.407ψ(x5 + 0.22x6/(0.22 + x4)), Rfp = 0.095ψ(0.0005 + x4)/(0.022 + x4)

D = (u1 + u2)/x7, ψ = x2/(0.108 + x2 + x2
2/14814.8)

a1 = a2 = 0.09x4/(0.034 + x4)

where Y = 0.51 is the growth yield coefficient, Q = 5 is the ratio of protein
value to inducer cost, xF

2 = 100.0g/L, xF
4 = 4.0g/L, x1 is the biomass (g/L),

x2, x3, and x4 are the glucose, protein and inducer concentrations (g/L), x5

and x6 are the inducer shock and inducer recovery factors, and x7 is the
volume (L). The initial conditions are x(t0) = (0.1, 40, 0.0, 0.0, 1.0, 0.0, 1.0)T .
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