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Semi-Infinite Programming (SIP) Notation The semi-infinite programming problem

General formulation - Nonlinear semi-infinite programming

Problem

min
x∈Rn

f(x)

s.t. g(x, t) ≤ 0
∀t ∈ T

(NLSIP)

f(x) is the objective function

g(x, t) is the infinite constraint
function

T ⊂ Rp is, usually, a cartesian
product of intervals
([α1, β1]× [α2, β2]× ...× [αp, βp])

Note
A more general problem could be
defined, but the extension is
straightforward.

Ismael Vaz (UMinho - PT) Nonlinear SIP 12 November 2007 4 / 83



Semi-Infinite Programming (SIP) Notation The semi-infinite programming problem

General formulation - Nonlinear semi-infinite programming

Problem

min
x∈Rn

f(x)

s.t. g(x, t) ≤ 0
∀t ∈ T

(NLSIP)

f(x) is the objective function

g(x, t) is the infinite constraint
function

T ⊂ Rp is, usually, a cartesian
product of intervals
([α1, β1]× [α2, β2]× ...× [αp, βp])

Note
A more general problem could be
defined, but the extension is
straightforward.

Ismael Vaz (UMinho - PT) Nonlinear SIP 12 November 2007 4 / 83



Semi-Infinite Programming (SIP) Notation The semi-infinite programming problem

General formulation - Nonlinear semi-infinite programming

Problem

min
x∈Rn

f(x)

s.t. g(x, t) ≤ 0
∀t ∈ T

(NLSIP)

f(x) is the objective function

g(x, t) is the infinite constraint
function

T ⊂ Rp is, usually, a cartesian
product of intervals
([α1, β1]× [α2, β2]× ...× [αp, βp])

Note
A more general problem could be
defined, but the extension is
straightforward.

Ismael Vaz (UMinho - PT) Nonlinear SIP 12 November 2007 4 / 83



Semi-Infinite Programming (SIP) Notation The semi-infinite programming problem

General formulation - Nonlinear semi-infinite programming

Problem

min
x∈Rn

f(x)

s.t. g(x, t) ≤ 0
∀t ∈ T

(NLSIP)

f(x) is the objective function

g(x, t) is the infinite constraint
function

T ⊂ Rp is, usually, a cartesian
product of intervals
([α1, β1]× [α2, β2]× ...× [αp, βp])

Note
A more general problem could be
defined, but the extension is
straightforward.

Ismael Vaz (UMinho - PT) Nonlinear SIP 12 November 2007 4 / 83



Semi-Infinite Programming (SIP) Notation The semi-infinite programming problem

General formulation - Nonlinear semi-infinite programming

Problem

min
x∈Rn

f(x)

s.t. g(x, t) ≤ 0
∀t ∈ T

(NLSIP)

f(x) is the objective function

g(x, t) is the infinite constraint
function

T ⊂ Rp is, usually, a cartesian
product of intervals
([α1, β1]× [α2, β2]× ...× [αp, βp])

Note
A more general problem could be
defined, but the extension is
straightforward.

Ismael Vaz (UMinho - PT) Nonlinear SIP 12 November 2007 4 / 83



Semi-Infinite Programming (SIP) Notation The semi-infinite programming problem

Why semi-infinite programming?

The infinite set T may be viewed as an infinite index set, i.e.,

Index set

min
x∈Rn

f(x)

s.t. gt(x) ≤ 0 ∀t ∈ T
(NLSIP)

Semi-infinite
The problem has a finite number of variables subject to an infinite number
of constraints.

Practical applications
In practical applications the index set T is related with time or space.
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Semi-Infinite Programming (SIP) Notation Academic examples

An very simple academic example (n = 1 and p = 1)

Example

min
x∈R

x2, s.t.
x

t
sin(t)− x

10
≤ 0, ∀t ∈ [2π, 10π]

5 10 15 20 25 30 35
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

t

g(
3,

t)

g(3, t) = 3
t sin(t)− 3

10

Feasibility
Is x̄ = 3 feasible?
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Semi-Infinite Programming (SIP) Notation Academic examples

Another example – Chebyshev approximation problem

To approximate the function t2 by a combination of t and et function in a
given set. d is the minimum distance.

min
p,d∈R2+1

d

s.t.

|t2 − (p1t + p2e
t)| ≤ d

∀t ∈ [0, 2]
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Semi-Infinite Programming (SIP) Notation Academic examples

Definition of stationary point

Let x∗ ∈ Rn be a point such that

g(x∗, t) ≤ 0, ∀t ∈ T ,

and there exists t1, t2, . . . , tm
∗

(∈ T ) and non negative numbers
λ0
∗, λ

1
∗, λ

2
∗, ..., λ

m∗
∗ such that

λ0
∗∇xf(x∗) +

m∗∑
i=1

λi
∗∇xg(x∗, ti) = 0.

with
g(x∗, ti) = 0, i = 1, ...,m∗.

Then x∗ is a stationary point for the (NLSIP).

Ismael Vaz (UMinho - PT) Nonlinear SIP 12 November 2007 8 / 83



Semi-Infinite Programming (SIP) Notation The multi-local optimization problem

Where global (multi-local) optimization plays a role?

The ti, i = 1, . . . ,m∗, points are global solutions of the problem

Multi-local problem (also called lower level problem)

max
t∈T

g(x∗, t)

The simple check for feasibility requests the computation of the global
solutions for the lower level problem (not complectly true).
In order to obtain global convergence for some methods the
computation of all the global and local solutions for the lower level
problem is necessary.
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Numerical methods for SIP

Available numerical methods

Methods

Discretization
Exchange
Reduction
Constraints transcription
Dual
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Numerical methods for SIP Discretization methods

Discretization methods

First approach

A natural way to address problem (NLSIP) is to consider a discretization of
the set T (in an equally spaced grid of points).
Usually discretization methods solve a sequence of finite (discretized)
problems for successive grid refinements.

Bad properties

These methods are Outer approximation methods and an infeasible
solution is usually obtained.
The problems solution is only obtained when the grid is close to the
set T .
High number of constraints to be considered if an accurate solution is
requested (ill conditioning can occur).
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Numerical methods for SIP Discretization methods

Discretization methods

Good properties
It is easy to implement and a solver for finite optimization can be used.

Algorithm (h is a grid space parameter)

S0: Define T [h0]. Let T̃ [h0] = T [h0]. Solve NLP(T̃ [h0]) and let x0 be the
found solution.

Sk: If xk−1 is not feasible ∀t ∈ T [hk−1]
then: Include all infeasible points into T̃ [hk−1]. Solve NLP(T̃ [hk−1]) and let

xk−1 be the found solution. Go to Step k.
else: If the maximum number of refinements is attained then stop.

Otherwise build another set T̃ [hk] from T [hk] and T̃ [hk−1]. Solve
NLP(T̃ [hk]) and let xk be the found solution. Go to Step k + 1.
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Numerical methods for SIP Exchange methods

Exchange methods

In exchange methods approximate solution(s) to the problem (we have as
many subproblems as infinite constraints in the (NLSIP)).

Lower level subproblem (multi-local)

max
t∈T

g(x̄, t)

Key idea

The solution(s) (points) of the lower level subproblem are added to a set T̃
while previous added points may be dropped (exchange of points).
A sequence of finite problems is solved considering the set T replaced by
the finite set T̃ .

Ismael Vaz (UMinho - PT) Nonlinear SIP 12 November 2007 14 / 83



Numerical methods for SIP Exchange methods

Exchange methods

In exchange methods approximate solution(s) to the problem (we have as
many subproblems as infinite constraints in the (NLSIP)).

Lower level subproblem (multi-local)

max
t∈T

g(x̄, t)

Key idea

The solution(s) (points) of the lower level subproblem are added to a set T̃
while previous added points may be dropped (exchange of points).
A sequence of finite problems is solved considering the set T replaced by
the finite set T̃ .

Ismael Vaz (UMinho - PT) Nonlinear SIP 12 November 2007 14 / 83



Numerical methods for SIP Exchange methods

Properties and algorithm

Bad properties
Slow rate of convergence.

Exchange algorithm

1 Let T̃ 0 = ∅, x0 be an initial guess and k = 0.

2 Approximately solve the lower level subproblem
Sk = arg maxt∈T g(xk, t).

3 if g(xk, t) ≤ 0, ∀t ∈ Sk then stop.
4 Add the new constraints and eventually drop others

(T̃ k+1 ⊆ T̃ k
⋃

Sk).
5 Solve NLP(T̃ k+1) and let xk+1 be the solution found.
6 Set k = k + 1 and go to step 2.
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Numerical methods for SIP Reduction type methods

Reduction type methods

Reduction methods
Reduction type methods use the more accurate solutions to the subproblem
maxt∈T g(x̄, t), computing all the global solutions and as much as possible
the local ones (multi-local optimization).

Bad properties

Obtaining all the global and local maximizer is not an easy task (even for
problems with only bound constraints).

Good properties
Good theoretical properties with fast convergence.
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Numerical methods for SIP Reduction type methods

Conceptual algorithm

Reduction type algorithm
1 Let x0 be an initial guess and k = 0.

2 Obtain all the global and local solutions to the lower level subproblem.
Let Ak = arg maxt∈T g(xk, t).

3 if g(xk, t) ≤ 0, ∀t ∈ Ak then stop.
4 Solve NLP(Ak) and let xk+1 be the solution found.
5 Set k = k + 1 and go to step 2.
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Numerical methods for SIP Constraint transcription

Constraint transcription

The technique
The constraint transcription is based the idea that

g(x̄, t) ≤ 0 ≡
∫

T
[g(x̄, t)]+dt = 0

Used methods
Regular finite optimization
methods can be applied.

Penalty methods
Interior point methods

Bad properties
LICQ is violated.
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Numerical methods for SIP Dual type methods

Dual type methods

A local quadratic approximation to the (NLSIP) problem is:

min
d∈Rn

fQ(d) ≡ 1
2
dT Hkd + dT∇f(xk)

s.t. dT∇xg(xk, t) + g(xk, t) ≤ 0, ∀t ∈ [a, b] ,

where Hk is a symmetric positive definite approximation to the Lagrangian
Hessian matrix.

The Lagrangian function

L(d, v) =
1
2
dT Hkd + dT∇f(xk) +

∫ b

a

(
dT∇xg(xk, t) + g(xk, t)

)
dv(t)
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Numerical methods for SIP Dual type methods

Dual type methods

Solution method
The dual problem minL(d, v) is solved by approximate the Lagrange
multipliers function v(t) by linear segments.

Conceptual algorithm
The local quadratic approximation is used in a sequential quadratic
programming (SQP) algorithm.
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Numerical methods for SIP Available software for SIP

Available solvers

Commercial software
MATLAB implements a discretization method in the optimization toolbox
(fseminf function).

Public domain software
The Nonlinear Semi-Infinite Programming Solver (NSIPS) is publicly
available. It implements:

A discretization method (two version).
A penalty function method (with 5 penalty functions), based on the
constraint transcription technique.
An interior point method, based on the constraint transcription
technique.
A SQP method, based on a dual local quadratic approximation.
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Numerical methods for SIP Available software for SIP

Available tools

The SIPAMPL
To provide a database with SIP problems an extension to AMPL was
developed.
SIPAMPL currently provides:

A database with over than 160 SIP problems
An interface between AMPL and MATLAB
A select tool to allow queries to the database
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Some practical applications

Outline

1 Semi-Infinite Programming (SIP) Notation

2 Numerical methods for SIP

3 Some practical applications

4 The particle swarm algorithm

5 Modification of PSOA for multi-local optimization
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Some practical applications Fed-batch fermentation process

Practical application I

Fed-batch fermentation process
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Some practical applications Fed-batch fermentation process

Fed-batch fermentation process

A great number of valuable products are produced using fermentation
processes and thus optimizing such processes is of great economic
importance.
Fermentation modeling process involves, in general, highly nonlinear
and complex differential equations.
Often optimizing these processes results in control optimization
problems for which an analytical solution is not possible.
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Some practical applications Fed-batch fermentation process

The control problem

The optimal control problem is described by a set of differential
equations χ̇ = h(χ, u, t), χ(t0) = χ0, t0 ≤ t ≤ tf , where χ represent
the state variables and u the control variables.
The performance index J can be generally stated as

J(tf ) = ϕ(χ(tf ), tf ) +
∫ tf

t0
φ(χ, u, t)dt,

where ϕ is the performance index of the state variables at final time tf

and φ is the integrated performance index during the operation.
Additional constraints that often reflet some physical limitation of the
system can be imposed.

Ismael Vaz (UMinho - PT) Nonlinear SIP 12 November 2007 26 / 83



Some practical applications Fed-batch fermentation process

The control problem

The optimal control problem is described by a set of differential
equations χ̇ = h(χ, u, t), χ(t0) = χ0, t0 ≤ t ≤ tf , where χ represent
the state variables and u the control variables.
The performance index J can be generally stated as

J(tf ) = ϕ(χ(tf ), tf ) +
∫ tf

t0
φ(χ, u, t)dt,

where ϕ is the performance index of the state variables at final time tf

and φ is the integrated performance index during the operation.
Additional constraints that often reflet some physical limitation of the
system can be imposed.

Ismael Vaz (UMinho - PT) Nonlinear SIP 12 November 2007 26 / 83



Some practical applications Fed-batch fermentation process

The control problem

The optimal control problem is described by a set of differential
equations χ̇ = h(χ, u, t), χ(t0) = χ0, t0 ≤ t ≤ tf , where χ represent
the state variables and u the control variables.
The performance index J can be generally stated as

J(tf ) = ϕ(χ(tf ), tf ) +
∫ tf

t0
φ(χ, u, t)dt,

where ϕ is the performance index of the state variables at final time tf

and φ is the integrated performance index during the operation.
Additional constraints that often reflet some physical limitation of the
system can be imposed.

Ismael Vaz (UMinho - PT) Nonlinear SIP 12 November 2007 26 / 83



Some practical applications Fed-batch fermentation process

The control problem

The general maximization problem (P ) can be posed as

problem (P )

max J(tf ) (1)
s.t. χ̇ = h(χ, u, t) (2)

χ ≤ χ(t) ≤ χ, (3)

u ≤ u(t) ≤ u, (4)

∀t ∈ [t0, tf ] (5)

Where the state constraints (3) and control constraints (4) are to be
understood as componentwise inequalities.

How we addressed problem (P)?
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Some practical applications Fed-batch fermentation process

Approaches - Fed trajectory u(t) approximated by a Linear spline w(t).

Penalty function for state constraints
The multi-local (getting all local optima) problem is easy to solve

Objective function

Ĵ(tf ) =


J(tf ) if χ ≤ χ(t) ≤ χ,

∀t ∈ [t0, tf ]
−∞ otherwise

State constraints

u ≤ w(ti) ≤ u, i = 1, . . . , n

Where ti are the spline knots.

The maximization NLP problem is

max
w(ti)

Ĵ(tf ), s.t. u ≤ w(ti) ≤ u, i = 1, . . . , n
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Some practical applications Fed-batch fermentation process

Approaches - Fed trajectory u(t) approximated by a Cubic spline s(t).

Penalty function for state constraints
The multi-local (getting all local optima) problem is hard to solve
No of-the-shelf software to address this problem
A new penalty function defined for control constraints

Objective function

Ĵ(tf ) =


J(tf ) if χ ≤ χ(t) ≤ χ,

∀t ∈ [t0, tf ]
−∞ otherwise

New objective function

J̄(tf ) =

 Ĵ(tf ) if u ≤ w(t) ≤ u,
∀t ∈ [t0, tf ]

−∞ otherwise
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 Ĵ(tf ) if u ≤ w(t) ≤ u,
∀t ∈ [t0, tf ]

−∞ otherwise

Ismael Vaz (UMinho - PT) Nonlinear SIP 12 November 2007 29 / 83



Some practical applications Fed-batch fermentation process

Approaches - Fed trajectory u(t) approximated by a Cubic spline s(t).

Penalty function for state constraints
The multi-local (getting all local optima) problem is hard to solve
No of-the-shelf software to address this problem
A new penalty function defined for control constraints

Objective function
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Some practical applications Fed-batch fermentation process

Implementation details

The AMPL modeling language:
was used to model five optimal control problems
dynamic external library facility was used to solve the ordinary
differentiable equations

AMPL - A Modeling Programming Language
www.ampl.com

The ordinary differentiable equations were solved using the CVODE
software package.

http://www.llnl.gov/casc/sundials/

A stochastic algorithm based on particle swarm was used to solve the
non-differentiable optimization problem. We address this algorithm
later on.
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Some practical applications Fed-batch fermentation process

The problems set

We obtained numerical results for five case studies.
Problem

penicillin refers to a problem of fed-batch fermentation process
where the optimal feed trajectory is to be computed while the penicillin
production is to be maximized.
ethanol refers to a similar optimal control problem where the ethanol
production is to be maximized.
chemotherapy is the only optimal control problem that does not refers
to a fed-batch fermentation processe. It is a problem of drug
administration in chemotherapy. The optimal trajectory to be
computed is the quantity of drug that must be present in order to
achieve a specified tumor reduction.
hprotein optimal control problem is to compute a unique trajectory
(substrate to be fed) problem rprotein includes also a trajectory for
an inducer. Both problems refer to a maximization for protein
production.
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Some practical applications Fed-batch fermentation process

Characteristics and parameters

The time displacement (hi) are fixed while the optimal trajectory
values are to be approximated.
Particle swarm is a population based optimization algorithm and a
population size of 60 was used with a maximum of 1000 iterations.
Since a stochastic algorithm was used we performed 10 runs of the
solver and the best solution is reported.
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Some practical applications Fed-batch fermentation process

Numerical results

Cubic Linear Literature
Problema NT n tf J(tf ) J(tf ) J(tf )
penicillin 1 5 132.00 87.70 88.29 87.99
ethanol 1 5 61.20 20550.70 20379.50 20839.00
chemotherapy 1 4 84.00 15.75 16.83 14.48
hprotein 1 5 15.00 38.86 32.73 32.40
rprotein 2 5 10.00 0.13 0.12 0.16

J(tf ) = Ĵ(tf ) = J̄(tf ), for all feasible points - splines

Similar results between approaches. A new solution for the ethanol case.
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Plots - Linear spline approximation - ethanol case
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Plots - Cubic spline approximation - Similar result
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Some practical applications Fed-batch fermentation process

Plots - Cubic spline approximation - Best result
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Practical application II

Robot trajectory planning
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Some practical applications Robot trajectory planning

Robot trajectory definition

Notions:

Links
Joints
Degree of freedom (d.o.f.)

Example

Two links (di - length, mi - mass),
three d.o.f. (θ1 - rotation about Y ,
θ2 - aperture of link 1, θ3 - aperture
of link 2)

Example
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Ways to defining a trajectory

In Cartesian space

(x(τ), y(τ), z(τ), p(τ))T

Z

Y

X

x( τ )

y(τ )

z(τ )

p(τ )
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Ways to defining a trajectory

In Joint space

θ(τ) = (θ1(τ), θ2(τ), θ3(τ))T

θ3(τ1)

θ1
(τ1)

θ2(τ1)

Z

Y

X

θ1
(τ )2

θ2(τ )2

θ3(τ )2

θ1
(τ )3

θ2(τ )3

θ3(τ )3

Initial position
Intermediate position

Final position
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Optimize trajectory

We can optimize the trajectory for:
Minimum trajectory time

Minimum energy consumption

Maximum load capacity
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Some practical applications Robot trajectory planning

Robot limitations

Maximum velocity in each joint
∣∣∣dθi(τ)

dτ

∣∣∣ ≤ Ci,1, i = 1, ..., l

Maximum acceleration in each joint
∣∣∣d2θi(τ)

dτ2

∣∣∣ ≤ Ci,2, i = 1, ..., l

Maximum jerk in each joint
∣∣∣d3θi(τ)

dτ3

∣∣∣ ≤ Ci,3, i = 1, ..., l

or
Maximum joint torque in each joint

|Fi(τ)| ≤ Ci, τ ∈ [0, τf ], i = 1, ..., l
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Some practical applications Robot trajectory planning

Trajectory limitations

Robot is in movement

l∑
i=1

(
dθi

dτ

)2

> 0, τ ∈ (0, τf )

except in initial and end positions

dθ

dτ
(0) =

dθ

dτ
(τf ) = 0

Acceleration in initial and end positions should not be zero

d2θ

dτ2
(0),

d2θ

dτ2
(τf ) 6= 0
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Some practical applications Robot trajectory planning

Optimal cubic polynomial joint trajectories

Given a set of via points defining a trajectory

Assume that [θ1(τ0), . . . , θ1(τn)], [θ2(τ0), . . . , θ2(τn)], . . . , [θl(τ0), . . . ,
θl(τn)] are the vectors of points (knots) where the joint trajectory passes
through.

Find the best trajectory
The optimization consists of finding the optimum total displacements time
that fits the joint trajectory by using cubic splines constrained to velocity,
acceleration, jerk and torque bounds.
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Some practical applications Robot trajectory planning

Additional notation

Let
t0 < t1 < · · · < tn be a time sequence where ti is the time where the
robot is in the joint position [θ1(τi), . . . , θl(τi)]
h1 = t1 − t0, h2 = t2 − t1, . . . , hn = tn − tn−1 be the time
displacements
Qij(t) be the cubic spline for joint i in [tj−1, tj ] and Qi(t) be the
cubic spline for joint i.

We will use the notation Q′(t) = dQ(t)
dt for the derivative.
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Some practical applications Robot trajectory planning

Generalized SIP

The SIP problem can be formulated in the following mathematical form:

min
n∑

j=1

hj ≡ tn − t0

s.t.
∣∣Q′

i(t)
∣∣ ≤ Ci,1∣∣Q′′

i (t)
∣∣ ≤ Ci,2∣∣Q′′′

i (t)
∣∣ ≤ Ci,3

|Fi(t)| ≤ Ci, i = 1, ..., l

hj > 0 j = 1, ..., n;
∀t ∈ [t0, tn]

where Ci,1, Ci,2, Ci,3 and Ci are
the bounds for the velocity, acce-
leration, jerk and torque, respecti-
vely, on joint i.
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Torque expression

The expression for the manipulator’s torque is

Fi(t) = JiniQ
′′
i (t) + BiniQ

′
i(t) +

1
ni

 l∑
j=1

Iij(Q(t))Q′′
j (t)

+
l∑

j=1

l∑
k=1

Cijk(Q(t))Q′
j(t)Q

′
k(t) + di(Q(t))


where for the ith robot joint
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Torque expression (cont.)

Ji=motor inertia (Ji > 0, i = 1, . . . , l);
ni=gear ratio;
Bi=viscous damping coefficient (Bi > 0, i = 1, . . . , l);

(Iij(Q(t)))i,j=1,...,l=inertia matrix (positive definite);
(Cijk(Q(t)))i,j,k=1,...,l=Coriolis tensor;

di(Q(t))=gravitational torque.
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Reformulation as standard SIP

min
n∑

j=1

hj

s.t.

∣∣∣∣∣Q′
i

(
τ

n∑
k=1

hk + t0

)∣∣∣∣∣ ≤ Ci,1∣∣∣∣∣Q′′
i

(
τ

n∑
k=1

hk + t0

)∣∣∣∣∣ ≤ Ci,2∣∣∣∣∣Q′′′
i

(
τ

n∑
k=1

hk + t0

)∣∣∣∣∣ ≤ Ci,3∣∣∣∣∣Fi

(
τ

n∑
k=1

hk + t0

)∣∣∣∣∣ ≤ Ci, i = 1, ..., l

hj > 0, j = 1, ..., n, ∀τ ∈ [0, 1].

using the linear
transformation
t = τ

∑n
k=1 hk + t0.
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Some results with problems available at SIPAMPL

Plot - Joint 5 for problem lin2
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Some more results

Plot - Joint 1 for problem deluca1
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Optimal parametrization of curves for robot joint trajectories

Another trajectory optimization
problem
The robot trajectory is known
(θi(τ)) and a parametrization
(t = h(τ)) is to be computed.

Find a parametrization

t = h(τ), τ ∈ [0, 1] τf = 1

where θ∗i (t) = θi(h−1(t)), such that

Model 1 Model 2
h(0) = 0

h(1) is minimum
h′(τ) > 0, τ ∈ [0, 1]∣∣∣dθ∗i (t)

dt

∣∣∣ ≤ Ci,1∣∣∣d2θ∗i (t)

dt2

∣∣∣ ≤ Ci,2 |Fi(t)| ≤ Ci∣∣∣d3θ∗i (t)

dt3

∣∣∣ ≤ Ci,3

i = 1, ..., l
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Some practical applications Robot trajectory planning

Using B-splines

The objective is to find a parametrization (h(τ)) that minimizes the total
time travel.

Let
g(τ) = h′(τ)

be approximated by a B-Spline (Bk,ξ(τ))

The total time travel is simply the integral of the parametric curve:∫ 1

0
g(τ)dτ =

∫ 1

0
Bk,ξ(τ)dτ =

1
k

n∑
i=1

xi (ξi+k − ξi)
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The complete problem formulation

Model 1

min
x∈Rn

∫ 1

0
g(τ)dτ

s.t. g(τ) > 0∣∣∣∣dθ∗i
dt

∣∣∣∣ ≤ Ci,1∣∣∣∣d2θ∗i
dt2

∣∣∣∣ ≤ Ci,2∣∣∣∣d3θ∗i
dt3

∣∣∣∣ ≤ Ci,3 i = 1, ..., l

∀τ ∈ [0, 1] ,

Model 2

min
x∈Rn

∫ 1

0
g(τ)dτ

s.t. g(τ) > 0
|Fi| ≤ Ci i = 1, ..., l

∀τ ∈ [0, 1] .

Ismael Vaz (UMinho - PT) Nonlinear SIP 12 November 2007 54 / 83



Some practical applications Robot trajectory planning

The complete problem formulation

Model 1

min
x∈Rn

∫ 1

0
g(τ)dτ

s.t. g(τ) > 0∣∣∣∣dθ∗i
dt

∣∣∣∣ ≤ Ci,1∣∣∣∣d2θ∗i
dt2

∣∣∣∣ ≤ Ci,2∣∣∣∣d3θ∗i
dt3

∣∣∣∣ ≤ Ci,3 i = 1, ..., l

∀τ ∈ [0, 1] ,

Model 2

min
x∈Rn

∫ 1

0
g(τ)dτ

s.t. g(τ) > 0
|Fi| ≤ Ci i = 1, ..., l

∀τ ∈ [0, 1] .

Ismael Vaz (UMinho - PT) Nonlinear SIP 12 November 2007 54 / 83



Some practical applications Robot trajectory planning

Some results with problems available at SIPAMPL

Plot - g(τ) and g′(τ) for problem elke1std (Model 1)
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Practical application III

Air pollution control
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Coordinate system

H∆

Y

X

Z

Hh

θ

da

b

(a, b) stack position
d stack internal diameter
h stack height
∆H plume rise
H = h + ∆H effective stack height
θ mean wind direction
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Dispersion model

Assuming that the plume has a Gaussian distribution, the concentration, of
gas or aerosol (particles with diameter less than 20 microns) at position x,
y and z of a continuous source with effective stack height H, is given by

C(x, y, z,H) =
Q

2πσyσzU
e
− 1

2

“
Y
σy

”2 (
e
− 1

2

“
z−H
σz

”2

+ e
− 1

2

“
z+H
σz

”2)
where Q (gs−1) is the pollution uniform emission rate, U (ms−1) is the
mean wind speed affecting the plume, σy (m) and σz (m) are the standard
deviations in the horizontal and vertical planes, respectively.
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Some practical applications Air pollution control

Change of coordinates

The source change of coordinates to position (a, b), in the wind direction.
Y is given by

Y = (x− a) sin(θ) + (y − b) cos(θ),

where θ (rad) is the wind direction (0 ≤ θ ≤ 2π).
σy and σz depend on X given by

X = (x− a) cos(θ)− (y − b) sin(θ).

Ismael Vaz (UMinho - PT) Nonlinear SIP 12 November 2007 59 / 83



Some practical applications Air pollution control

Plume rise

The effective emission height is the sum of the stack height, h (m), with
the plume rise, ∆H (m). The considered elevation is given by the Holland
equation

∆H =
Vod

U

(
1.5 + 2.68

To − Te

To
d

)
,

where d (m) is the internal stack diameter, Vo (ms−1) is the gas out
velocity, To (K) is the gas temperature and Te (K) is the environment
temperature.
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Some practical applications Air pollution control

Formulations

Assuming n pollution sources distributed in a region;
Ci is the source i contribution for the total concentration;
Gas chemical inert.

We can derive three formulations:
Minimize the stack height;
Maximum pollution computation and sampling stations planning;
Air pollution abatement.
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Some practical applications Air pollution control

Minimum stack height

Minimizing the stack height u = (h1, . . . , hn), while the pollution ground
pollution level is kept below a given threshold C0, in a given region R, can
be formulated as a SIP problem

min
u∈Rn

n∑
i=1

cihi

s.t. g(u, v ≡ (x, y)) ≡
n∑

i=1

Ci(x, y, 0,Hi) ≤ C0

∀v ∈ R ⊂ R2,

where ci, i = 1, . . . , n, are the construction costs.

Note: more complex objective function can be considered.
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Some practical applications Air pollution control

Maximum pollution and sampling stations planning

The maximum pollution concentration (l∗) in a given region can be
obtained by solving the following SIP problem

min
l∈R

l

s.t. g(z, v ≡ (x, y)) ≡
n∑

i=1

Ci(x, y, 0,Hi) ≤ l

∀v ∈ R ⊂ R2.

The active points v∗ ∈ R where g(z∗, v∗) = l∗ are the global optima and
indicate where the sampling (control) stations should be placed.
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Some practical applications Air pollution control

Air pollution abatement

Minimizing the pollution abatement (minimizing clean costs, maximizing
the revenue, minimizing the economical impact) while the air pollution
concentration is kept below a given threshold can be posed as a SIP
problem

min
u∈Rn

n∑
i=1

piri

s.t. g(u, v ≡ (x, y)) ≡
n∑

i=1

(1− ri)Ci(x, y, 0,Hi) ≤ C0

∀v ∈ R ⊂ R2,

where u = (r1, . . . , rn) is the pollution reduction and pi, i = 1, . . . , n, is
the source i cost (cleaning or not producing).
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Some practical applications Air pollution control

Numerical results – Minimum stack height (vaz1)

Instance 1 Instance 2 Instance 3
h1 0.00 10.00 196.93
h2 78.26 69.09 380.06
h3 0.00 10.00 403.12
h4 153.17 152.64 428.38
h5 80.90 71.27 344.81
h6 0.00 10.00 274.58
h7 13.52 13.52 402.83
h8 161.78 161.87 396.82
h9 141.73 141.63 415.58

h10 15.05 15.05 423.99
Total 644.40 655.06 3667.10

Instance 1 – no limit on stack, Instance 2 – limit of 10m, Instance 3 –
Portuguese legislation.
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The particle swarm algorithm

Outline

1 Semi-Infinite Programming (SIP) Notation

2 Numerical methods for SIP

3 Some practical applications

4 The particle swarm algorithm

5 Modification of PSOA for multi-local optimization
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The particle swarm algorithm The paradigm

We intended to solve the following global optimization problem with a
particle swarm algorithm.

Global optimization problem

max
t∈T

ḡ(t) ≡ g(x̄, t)

with T ∈ Rp.
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The particle swarm algorithm The paradigm

The Particle Swarm Paradigm (PSP)

The PSP is a population (swarm) based algorithm that mimics the social
behavior of a set of individuals (particles).

An individual behavior is a combination of its past experience (cognition
influence) and the society experience (social influence).

In the optimization context a particle ℘, at time instant k, is represented
by its current position (t℘(k)), its best ever position (y℘(k)) and its
traveling velocity (v℘(k)).
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The particle swarm algorithm The paradigm

The new travel position and velocity

The new particle position is updated by

Update position

t℘(k + 1) = t℘(k) + v℘(k + 1),

where v℘(k + 1) is the new velocity given by

Update velocity

v℘
j (k+1) = ι(k)v℘

j (k)+µω1j(k)
(
y℘

j (k)− t℘j (k)
)
+νω2j(k)

(
ŷj(k)− t℘j (k)

)
,

for j = 1, . . . , p.

ι(k) is a weighting factor (inertial)
µ is the cognition parameter and ν is the social parameter
ω1j(k) and ω2j(k) are random numbers drawn from the uniform
(0, 1) distribution.
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The particle swarm algorithm The paradigm

The best ever particle

ŷ(k) is a particle position with global best function value so far, i.e.,

Best position

ŷ(k) ∈ arg min
a∈A

ḡ(a)

A =
{
y1(k), . . . , ys(k)

}
.

where s is the number of particles in the swarm.

Note
In an algorithmic point of view we just have to keep track of the particle
with the best ever function value.
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The particle swarm algorithm Some features

Features

Population based algorithm.

Good
Easy to implement.
Easy to parallelize.
Easy to handle discrete variables.
Only uses objective function evaluations.

Not so good
Slow rate of convergence near an optimum.
Quite large number of function evaluations.
In the presence of several global optima the algorithm may not
converge.
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The particle swarm algorithm Some features

Properties

With a proper selection of the algorithm parameters finite termination
of the algorithm can be established, in a probabilistic sense.
Convergence for a global optimum is not guaranteed by this simple
version of the particle swarm algorithm, but some adaption can be
introduce to guarantee it.
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Modification of PSOA for multi-local optimization

Outline

1 Semi-Infinite Programming (SIP) Notation
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Modification of PSOA for multi-local optimization The multi-local optimization problem revisited

Multi-local revisited

Given x̄ the multi-local optimization problem is defined as

Multi-local optimization problem

max
t∈T

g(x̄, t) ≡ ḡ(t)

with T ∈ Rn.

The multi-local concept
All the global and local optima are to be computed.

Some characteristics
These problems are mostly differentiable and the objective function
computation is costless.
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Modification of PSOA for multi-local optimization The ascent directions

PSP with the steepest ascent (quasi-Newton) direction

The new particle position update equation is kept while the new velocity
equation is given by

Steepest ascent velocity

v℘
j (k+1) = ι(k)v℘

j (k)+µω1j(k)
(
y℘

j (k)− t℘j (k)
)
+νω2j(t)

(
∇j ḡ(y℘

j (k))
)

,

for j = 1, . . . , p, where ∇ḡ(t) is the gradient of the objective function.

Each particle uses the steepest ascent direction computed at each particle
best position (y℘(k)).

The inclusion of the steepest ascent direction in the velocity equation aims
to drive each particle to a neighbor local maximum and since we have a
population of particles, each one will be driven to a local maximum.
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Modification of PSOA for multi-local optimization The ascent directions

PSP with an ascent direction

Other approach is to use

Ascent velocity formula

w℘ =
1∑m

j=1 |ḡ(z℘
j )− ḡ(y℘)|

m∑
j=1

(ḡ(z℘
j )− ḡ(y℘))

(z℘
j − y℘)

‖z℘
j − y℘‖

as an ascent direction at y℘, in the velocity equation, to overcome the need
to compute the gradient.

Where
y℘ is the best position of particle ℘

{z℘
j }m

j=1 is a set of m (random) points close to yp,

Under certain conditions w℘ simulates the steepest ascent direction.

Ismael Vaz (UMinho - PT) Nonlinear SIP 12 November 2007 76 / 83



Modification of PSOA for multi-local optimization Implementation details

Stopping criterion

We propose the stopping criterion

Minimum velocity attained

max
℘

[v℘(k)]opt ≤ ε℘

where

Constrained velocity

[v℘(k)]opt =

 p∑
j=1


0 if t℘j (k) = βj and v℘

j (k) ≥ 0
0 if t℘j (k) = αj and v℘

j (k) ≤ 0(
v℘
j (k)

)2
otherwise


1/2

The stopping criterion is based on the optimality conditions for the
multi-local optimization problem.
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Modification of PSOA for multi-local optimization Numerical results

Numerical results

Gradient version Approximate descent direction version
F.O. Nafe Nage g∗a gbest F.O. Nafe g∗a gbest

17 0 10000000 177 4,652E+03 2,393E+03 40 10005589 2,203E-01 1,327E-01
18 100 10000000 1850 -9,160E+00 -1,026E+01 100 10004066 -1,052E+01 -1,052E+01
19 100 10000000 2126 -7,801E+00 -8,760E+00 100 10003906 -1,012E+01 -1,014E+01
20 100 10000000 1909 -9,401E+00 -9,997E+00 100 10004069 -1,037E+01 -1,039E+01
21 0 3600000 335 -1,024E+02 -1,648E+02 60 3600999 -1,867E+02 -1,867E+02
22 100 1366222 973 -4,075E-01 -4,075E-01 100 3600804 -4,075E-01 -4,075E-01
23 100 3600000 570 -1,806E+01 -1,806E+01 100 3600902 -1,806E+01 -1,806E+01
24 100 3600000 194 -2,278E+02 -2,278E+02 100 3601003 -2,278E+02 -2,278E+02
25 100 3600000 167 -2,429E+03 -2,429E+03 100 3601160 -2,429E+03 -2,429E+03
26 90 3600000 81 -2,477E+04 -2,478E+04 100 3601278 -2,478E+04 -2,478E+04
27 10 3600000 58 1,607E+05 -2,436E+05 100 3601418 -2,493E+05 -2,493E+05
28 0 10000000 141 4,470E+02 3,102E+01 60 10009759 3,977E-02 2,506E-02
29 0 10000000 135 1,289E+05 7,935E+02 0 10016905 3,633E-01 2,404E-01
30 100 1433664 16314 8,325E-112 0,000E+00 100 3601264 4,987E-07 4,464E-08
31 100 10000000 313 1,997E-13 2,780E-21 100 10005221 2,231E-04 6,612E-05
32 40 10000000 160 8,338E+00 3,031E-04 100 10006065 2,005E-03 1,186E-03
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Modification of PSOA for multi-local optimization Numerical results

The test set for SIP

The test problems were obtained from SIP where x̄ was replaced by
x∗, where x∗ is the SIP solution included in the SIPAMPL database.
SIPAMPL stands for SIP with AMPL and is a software package that
provides, among other features, a database of SIP coded problems.
All SIP problems considered have only one infinite constraint.

SIP problem Test problem p Obs
watson2 sip_wat2 1 Unidimensional
vaz3 sip_vaz3 2 Air pollution abatement
priceS6 sip_S6 6 Higher dimension in SIPAMPL
priceU sip_U 6 Higher dimension in SIPAMPL
random sip_rand 6 Random generated with known solution
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Modification of PSOA for multi-local optimization Numerical results

Numerical results

A population of 40 particles and a maximum of 2000 iterations was
used, with the steepest ascent direction version.
sip_wat2 a global and a local maxima were found. 10 particles
converged to the local maxima t = 1 with ḡ(1) = −0.058594 and the
remaining 30 to the global one (t = 0) with ḡ(0) = −2.5156e− 08
In sip_vaz3 the objective function is flat (equal to zero) in a
subregion.

t ḡ(t) npar

(−0.783012, 2.172526) 0.000000 1
(−0.112199,−0.686259) 0.000000 1
(−0.278460, 0.095245) 0.000000 1
(−0.446057, 1.157275) 0.000000 1
(0.443709, 3.811052) 0.000000 1

(3.684002,−0.629689) 0.500007 22
(1.099826, 0.112477) 0.500055 13
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sip_wat2 a global and a local maxima were found. 10 particles
converged to the local maxima t = 1 with ḡ(1) = −0.058594 and the
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Modification of PSOA for multi-local optimization Numerical results

Numerical results

sip_S6 a reported global maximizer and two local with objective
function values of 0.027092, -3.69008 and -1.95425 respectively.

t ḡ(t)

...
(1.622134, 1.687810, 2.000000, 0.085439, 2.000000, 0.350174) 0.024811

...
(1.634326, 1.671065, 2.000000, 0.054348, 2.000000, 2.000000) −1.954538

...

sip_U reported two global maximizers and eleven local maximizers

t ḡ(t) npar

(-0.665555,-1.000000,1.00,1.00,1.00,1.00) -0.002587 1
(-0.689138,-0.933410,1.00,1.00,1.00,1.00) -0.003319 1
(-0.890160,-1.000000,1.00,1.00,1.00,1.00) -0.000225 1
(-0.894640,-1.000000,1.00,1.00,1.00,1.00) -0.000103 1
(-0.897369,-1.000000,1.00,1.00,1.000,1.00) -0.000648 1
(1.000000,1.000000,1.00,1.00,1.00,1.00) 0.239638e-07 35
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Ongoing work

Ongoing work

A quasi-Newton approach is incorporated with a particle swarm
strategy in order to reduce the number of function evaluations
A line-search is being used in order to guarantee the converge to at
least a local solutions with high accuracy
A MATLAB version is already implemented
To implement a reduction type method for SIP using the developed
strategy for multi-local optimization
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The end

THE END

email: aivaz@dps.uminho.pt
Web http://www.norg.uminho.pt/aivaz
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