A genetic algorithm framework for multilocal optimization

A. Ismael F. Vaz Lino Costa

Production and Systems Department, School of engineering, University of Minho, Gualtar Campus, 4710 - 057 Braga, Portugal; Email: {lac,aivaz}@dps.uminho.pt

EURO XXIII, Bonn, Germany

5-8 July 2009

Vaz (UMinho - PT)

Multi-local Optimization

5-8 July 2009 1 / 28

Introduction

- 2 Genetic (Evolutionary) algorithm framework
- 3 Genetic algorithm framework for multi-local optimization
- Application to SIP
- Numerical results
- 6 Conclusions

э

Introduction

2 Genetic (Evolutionary) algorithm framework

3 Genetic algorithm framework for multi-local optimization

Application to SIP

Numerical results

6 Conclusions

э

- 2 Genetic (Evolutionary) algorithm framework
- Genetic algorithm framework for multi-local optimization
 - 4 Application to SIP
- 5 Numerical results
- 6 Conclusions

э

(日) (周) (日) (日)

- 2 Genetic (Evolutionary) algorithm framework
- Genetic algorithm framework for multi-local optimization
 - Application to SIP
- 5 Numerical results

Conclusions

3

- ∢ ≣ →

3 N.

A A A

- 2 Genetic (Evolutionary) algorithm framework
- Genetic algorithm framework for multi-local optimization
 - Application to SIP
- 5 Numerical results

Conclusions

3

- ∢ ≣ →

∃ >

A A A

- Genetic (Evolutionary) algorithm framework 2
- Genetic algorithm framework for multi-local optimization 3
 - Application to SIP
- Numerical results 5

3

- < ∃ →

Introduction

- 2 Genetic (Evolutionary) algorithm framework
- 3 Genetic algorithm framework for multi-local optimization
- 4 Application to SIP
- 5 Numerical results
- Conclusions

э

∃ → < ∃</p>

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Problem

Addressed problem

The following problem is under consideration

$$\min_{x \in \Omega \subset R^n} f(x) \tag{1}$$

where f(x) is the objective function, $x = (x_1, \ldots, x_n)^T$ is an n dimensional vector and $\Omega \subset \mathbb{R}^n$ is the feasible set, herein assumed to be a cartesian product of intervals with finite bounds ($\Omega = [\alpha_1, \beta_1] \times \cdots \times [\alpha_n, \beta_n]$).

Multi-local

We aim to compute approximations to all the local optima for problem (1).

Assumptions

f(x) is assumed to be twice continuous differentiable and cheap to evaluate (*i.e.* the number of objective function evaluations is not a concern).

Problem

Addressed problem

The following problem is under consideration

$$\min_{x \in \Omega \subset \mathbb{R}^n} f(x) \tag{1}$$

where f(x) is the objective function, $x = (x_1, \ldots, x_n)^T$ is an n dimensional vector and $\Omega \subset \mathbb{R}^n$ is the feasible set, herein assumed to be a cartesian product of intervals with finite bounds ($\Omega = [\alpha_1, \beta_1] \times \cdots \times [\alpha_n, \beta_n]$).

Multi-local

We aim to compute approximations to all the local optima for problem (1).

Assumptions

f(x) is assumed to be twice continuous differentiable and cheap to evaluate (*i.e.* the number of objective function evaluations is not a concern).

Problem

Addressed problem

The following problem is under consideration

$$\min_{x \in \Omega \subset R^n} f(x) \tag{1}$$

where f(x) is the objective function, $x = (x_1, \ldots, x_n)^T$ is an n dimensional vector and $\Omega \subset \mathbb{R}^n$ is the feasible set, herein assumed to be a cartesian product of intervals with finite bounds $(\Omega = [\alpha_1, \beta_1] \times \cdots \times [\alpha_n, \beta_n])$.

Multi-local

We aim to compute approximations to all the local optima for problem (1).

Assumptions

f(x) is assumed to be twice continuous differentiable and cheap to evaluate (*i.e.* the number of objective function evaluations is not a concern).

Introduction

2 Genetic (Evolutionary) algorithm framework

3 Genetic algorithm framework for multi-local optimization

4 Application to SIP

5 Numerical results

Conclusions

э

-

Image: A matrix and a matrix

Genetic algorithms

A genetic algorithm is a population based algorithm that uses techniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover.

A GA framework

- Randomly initialize an initial population (real-parameter representation).
- Compute a set of Parents from the elite population using a *litness* function (tournament selection).
- Gompute a set of Offsprings obtained from the set of Parents using the crossover and *initiation* operators.
- Verify the stopping criteria. If not met then goto step 2

Genetic algorithms

A genetic algorithm is a population based algorithm that uses techniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover.

A GA framework

- Randomly initialize an initial population (real-parameter representation).
- ② Compute a set of Parents from the elite population using a *fitness* function (tournament selection).
- Compute a set of Offsprings obtained from the set of Parents using the crossover and mutation operators.
- Verify the stopping criteria. If not met then goto step 2.

(日) (同) (目) (日)

Genetic algorithms

A genetic algorithm is a population based algorithm that uses techniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover.

A GA framework

- Randomly initialize an initial population (real-parameter representation).
- Compute a set of Parents from the elite population using a *fitness* function (tournament selection).
- Occupie to the set of Offsprings obtained from the set of Parents using the crossover and mutation operators.
- Verify the stopping criteria. If not met then goto step 2.

・ロト ・聞ト ・ヨト ・ヨト

Genetic algorithms

A genetic algorithm is a population based algorithm that uses techniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover.

A GA framework

- Randomly initialize an initial population (real-parameter representation).
- Compute a set of Parents from the elite population using a *fitness* function (tournament selection).
- Ocmpute a set of Offsprings obtained from the set of Parents using the crossover and mutation operators.
- Overify the stopping criteria. If not met then goto step 2.

Genetic algorithms

A genetic algorithm is a population based algorithm that uses techniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover.

A GA framework

- Randomly initialize an initial population (real-parameter representation).
- Output a set of Parents from the elite population using a *fitness* function (tournament selection).
- Compute a set of Offsprings obtained from the set of Parents using the *crossover* and *mutation* operators.
 - Verify the stopping criteria. If not met then goto step 2.

Genetic algorithms

A genetic algorithm is a population based algorithm that uses techniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover.

A GA framework

- Randomly initialize an initial population (real-parameter representation).
- Output a set of Parents from the elite population using a *fitness* function (tournament selection).
- Compute a set of Offsprings obtained from the set of Parents using the *crossover* and *mutation* operators.
- Verify the stopping criteria. If not met then goto step 2.

The fitness function

Usually the *fitness* function corresponds to the objective function. The points in the population are sorted by the objective function value.

The Tournament Selection

Tournaments are played between points and the better solution is chosen as a Parent (survival of the fittest). The process is repeated until the set of Parents is fulfilled.

(日) (周) (日) (日)

The fitness function

Usually the *fitness* function corresponds to the objective function. The points in the population are sorted by the objective function value.

The Tournament Selection

Tournaments are played between points and the better solution is chosen as a Parent (survival of the fittest). The process is repeated until the set of Parents is fulfilled.

・ 伺 ト ・ ヨ ト ・ ヨ ト

The crossover operator

Simulated Binary Crossover (SBX) that simulates the working principle of single-point crossover operator for binary strings.

The *mutation* operator

Polynomial mutation that guarantees that the probability of creating a point closer to the parent is more than the probability of creating one away from it.

(日) (周) (日) (日)

The crossover operator

Simulated Binary Crossover (SBX) that simulates the working principle of single-point crossover operator for binary strings.

The mutation operator

Polynomial mutation that guarantees that the probability of creating a point closer to the parent is more than the probability of creating one away from it.

・ 伺 ト ・ ヨ ト ・ ヨ ト

Introduction

2 Genetic (Evolutionary) algorithm framework

Genetic algorithm framework for multi-local optimization

- 4 Application to SIP
- 5 Numerical results

Conclusions

э

The fitness function

The use of the objective function as the *fitness* function may no longer be appropriate.

The proposed *fitness* function - Version 1

Points in the population that are nearby each other (e.g. using the Euclidean distance) are assigned a huge *fitness* value, since diversity near a local optima is not requested.

The objective function is used as the *fitness* function.

(日) (周) (日) (日)

The fitness function

The use of the objective function as the *fitness* function may no longer be appropriate.

The proposed fitness function - Version 1

Points in the population that are nearby each other (e.g. using the Euclidean distance) are assigned a huge *fitness* value, since diversity near a local optima is not requested.

The objective function is used as the *fitness* function.

(人間) トイヨト イヨト

The proposed fitness function - Version 2

The second version of the proposed *fitness* function uses some concepts from the multiobjective (biobjective) optimization.

The dominance concept

Let $f_1(x) \ (\equiv f(x))$ and $f_2(x) \ (\equiv ||\nabla L(x, \lambda)||^a)$ be two objective functions. A point x is said to dominate a point $y \ (x \prec y)$ if

 $f_i(x) \le f_i(y), \quad i = 1, 2 \quad \text{and} \quad \exists j \quad \text{such that} \quad f_j(x) < f_j(y).$ (2)

If the conditions in (2) are not verified we simply say that x does not dominate y ($x \not\prec y$).

 $^{a}L(x,\lambda)$ is the Lagrangian function with Lagrange multipliers λ .

Vaz (UMinho - PT)

Multi-local Optimization

5-8 July 2009 11 / 28

э

・ロト ・四ト ・ヨト ・ヨト

The proposed fitness function - Version 2

The second version of the proposed *fitness* function uses some concepts from the multiobjective (biobjective) optimization.

The dominance concept

Let $f_1(x) \ (\equiv f(x))$ and $f_2(x) \ (\equiv ||\nabla L(x, \lambda)||^a)$ be two objective functions. A point x is said to dominate a point $y \ (x \prec y)$ if

 $f_i(x) \le f_i(y), \quad i = 1, 2 \quad \text{and} \quad \exists j \quad \text{such that} \quad f_j(x) < f_j(y).$ (2)

If the conditions in (2) are not verified we simply say that x does not dominate $y \ (x \not\prec y)$.

 $^{a}L(x,\lambda)$ is the Lagrangian function with Lagrange multipliers λ .

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二頁 - のへで

Lagrangian computation

Since we are dealing with a simple bound constrained problem the norm of the Lagrangian gradient can be computed without explicitly knowing the Lagrange multipliers.

The proposed *fitness* function - Version 2

Points in the population not dominated by any other point (in the population) is assigned rank 1 (*fitness* equal to 1) and removed from the *fitness* computation. Points thereafter not dominated by any other point (in the remaining point of the population) is assigned rank 2. The procedure is repeated until no point are left to assign a rank.

A point x only dominates a point y if it satisfies relations (2) and is within a specified Euclidian distance.

(日) (同) (目) (日)

Lagrangian computation

Since we are dealing with a simple bound constrained problem the norm of the Lagrangian gradient can be computed without explicitly knowing the Lagrange multipliers.

The proposed *fitness* function - Version 2

Points in the population not dominated by any other point (in the population) is assigned rank 1 (*fitness* equal to 1) and removed from the *fitness* computation. Points thereafter not dominated by any other point (in the remaining point of the population) is assigned rank 2. The procedure is repeated until no point are left to assign a rank.

A point x only dominates a point y if it satisfies relations (2) and is within a specified Euclidian distance.

э

A quasi-Newton iteration is performed for each point in the elite population:

- a BFGS update formula to approximate the inverse Lagrangian Hessian is used.

э

A quasi-Newton iteration is performed for each point in the elite population:

- a BFGS update formula to approximate the inverse Lagrangian Hessian is used.
- The identity matrix is used whenever a new point enters the elite population.

э

A quasi-Newton iteration is performed for each point in the elite population:

- a BFGS update formula to approximate the inverse Lagrangian Hessian is used.
- The identity matrix is used whenever a new point enters the elite population.
- A point kept in the elite population performs a sequence of quasi-Newton iterations (independently of the fitness).
- a line search strategy is used together with an Armijo like rule in order to globalize the algorithm.
- A reset strategy (setting the approximation to the identity matrix) is performed each *n* successive iterations and the inverse Lagrangian Hessian approximation is not updated if the denominator of the updating formula is, in absolute value, lower than a specified tolerance

E SQC

A quasi-Newton iteration is performed for each point in the elite population:

- a BFGS update formula to approximate the inverse Lagrangian Hessian is used.
- The identity matrix is used whenever a new point enters the elite population.
- A point kept in the elite population performs a sequence of quasi-Newton iterations (independently of the fitness).
- a line search strategy is used together with an Armijo like rule in order to globalize the algorithm.

E SQC

A quasi-Newton iteration is performed for each point in the elite population:

- a BFGS update formula to approximate the inverse Lagrangian Hessian is used.
- The identity matrix is used whenever a new point enters the elite population.
- A point kept in the elite population performs a sequence of quasi-Newton iterations (independently of the fitness).
- a line search strategy is used together with an Armijo like rule in order to globalize the algorithm.
- A reset strategy (setting the approximation to the identity matrix) is performed each n successive iterations and the inverse Lagrangian Hessian approximation is not updated if the denominator of the updating formula is, in absolute value, lower than a specified tolerance.

3

The GA can be described as follows

MLOCGAMO

- Randomly initialize the initial population *E*⁰. Set *k* = 0 as the iteration counter.
- While the number of iterations and objective function evaluations is below the given maxima then
 - Compute the set of parents 7th from the elite population 8th using a fitness function (selection);
 - Compute the Offspring O^k from the parent population P^k using the crossover and *mutation* operators;
 - Apply: a quasi-Newton iteration for all the points in the elite set C^{*}.
 Compute the new elite set C^{*+1} by selecting points from C^{*} U C^{*} with the best fitness. For points with the same fitness value the ones with lower objective function value are selected.

(日) (同) (目) (日)

The GA can be described as follows

MLOCGAMO

- Randomly initialize the initial population \mathcal{E}^0 . Set k = 0 as the iteration counter.
- While the number of iterations and objective function evaluations is below the given maxima then
 - Compute the set of parents P^k from the elite population E^k using a fitness function (selection);
 - Compute the Offspring O^b from the parent population P^b using the crossover and mutation operators;
 - Apply: a quasi-Newton iteration for all the points in the elite set C⁴.
 Compute the new elite set C⁴⁺¹ by selecting points from C⁴ U/O⁴ with the best fitness. For points with the same fitness value the ones with lower objective function value are selected.

(日) (同) (目) (日)

The GA can be described as follows

MLOCGAMO

- Randomly initialize the initial population *E*⁰. Set *k* = 0 as the iteration counter.
- While the number of iterations and objective function evaluations is below the given maxima then
 - Compute the set of parents \mathcal{P}^k from the elite population \mathcal{E}^k using a *fitness* function (selection);
 - Compute the Offspring \mathcal{O}^k from the parent population \mathcal{P}^k using the *crossover* and *mutation* operators;
 - Apply a quasi-Newton iteration for all the points in the elite set \mathcal{E}^k .
 - Compute the new elite set E^{k+1} by selecting points from E^k ∪ O^k with the best fitness. For points with the same fitness value the ones with lower objective function value are selected.
 - Set k = k + 1.

э

The GA can be described as follows

MLOCGAMO

- Randomly initialize the initial population *E*⁰. Set *k* = 0 as the iteration counter.
- While the number of iterations and objective function evaluations is below the given maxima then
 - Compute the set of parents \mathcal{P}^k from the elite population \mathcal{E}^k using a *fitness* function (selection);
 - Compute the Offspring O^k from the parent population P^k using the crossover and mutation operators;
 - Apply a quasi-Newton iteration for all the points in the elite set \mathcal{E}^k .
 - Compute the new elite set E^{k+1} by selecting points from E^k ∪ O^k with the best fitness. For points with the same fitness value the ones with lower objective function value are selected.
 - Set k = k + 1.

э

(日) (同) (目) (日)

The GA can be described as follows

MLOCGAMO

- Randomly initialize the initial population *E*⁰. Set *k* = 0 as the iteration counter.
- While the number of iterations and objective function evaluations is below the given maxima then
 - Compute the set of parents \mathcal{P}^k from the elite population \mathcal{E}^k using a *fitness* function (selection);
 - Compute the Offspring \mathcal{O}^k from the parent population \mathcal{P}^k using the *crossover* and *mutation* operators;
 - Apply a quasi-Newton iteration for all the points in the elite set E^k.
 Compute the new elite set E^{k+1} by selecting points from E^k ∪ O^k with the best *fitness*. For points with the same *fitness* value the ones with lower objective function value are selected.
 - Set k = k + 1.

э

The GA can be described as follows

MLOCGAMO

- Randomly initialize the initial population *E*⁰. Set *k* = 0 as the iteration counter.
- While the number of iterations and objective function evaluations is below the given maxima then
 - Compute the set of parents \mathcal{P}^k from the elite population \mathcal{E}^k using a *fitness* function (selection);
 - Compute the Offspring \mathcal{O}^k from the parent population \mathcal{P}^k using the *crossover* and *mutation* operators;
 - Apply a quasi-Newton iteration for all the points in the elite set \mathcal{E}^k .
 - Compute the new elite set E^{k+1} by selecting points from E^k ∪ O^k with the best *fitness*. For points with the same *fitness* value the ones with lower objective function value are selected.
 - Set k = k + 1.

э

The GA can be described as follows

MLOCGAMO

- Randomly initialize the initial population *E*⁰. Set *k* = 0 as the iteration counter.
- While the number of iterations and objective function evaluations is below the given maxima then
 - Compute the set of parents \mathcal{P}^k from the elite population \mathcal{E}^k using a *fitness* function (selection);
 - Compute the Offspring \mathcal{O}^k from the parent population \mathcal{P}^k using the *crossover* and *mutation* operators;
 - Apply a quasi-Newton iteration for all the points in the elite set \mathcal{E}^k .
 - Compute the new elite set \mathcal{E}^{k+1} by selecting points from $\mathcal{E}^k \bigcup \mathcal{O}^k$ with the best *fitness*. For points with the same *fitness* value the ones with lower objective function value are selected.
 - Set k = k + 1.

э

The GA can be described as follows

MLOCGAMO

- Randomly initialize the initial population *E*⁰. Set *k* = 0 as the iteration counter.
- While the number of iterations and objective function evaluations is below the given maxima then
 - Compute the set of parents \mathcal{P}^k from the elite population \mathcal{E}^k using a *fitness* function (selection);
 - Compute the Offspring \mathcal{O}^k from the parent population \mathcal{P}^k using the *crossover* and *mutation* operators;
 - Apply a quasi-Newton iteration for all the points in the elite set \mathcal{E}^k .
 - Compute the new elite set \mathcal{E}^{k+1} by selecting points from $\mathcal{E}^k \bigcup \mathcal{O}^k$ with the best *fitness*. For points with the same *fitness* value the ones with lower objective function value are selected.
 - Set k = k + 1.

э

Introduction

- 2 Genetic (Evolutionary) algorithm framework
- 3 Genetic algorithm framework for multi-local optimization

4 Application to SIP

5 Numerical results

Conclusions

э

(日) (周) (日) (日)

Definition

A semi-infinite programming problem can be described in the following form:

SIP

$$\begin{split} \min_{y \in R^m} & g(y), \\ s.t. & h(y,x) \leq 0 \\ & \forall x \in \Omega \subset R^n \end{split}$$

Why semi-infinite?

These problems are characterized to have a finite number of variables (m) to be determined subject to an infinite number of constraints (recall that Ω is an infinite set).

Definition

A semi-infinite programming problem can be described in the following form:

SIP

$$\begin{split} \min_{y \in R^m} & g(y), \\ s.t. & h(y,x) \leq 0 \\ & \forall x \in \Omega \subset R^n \end{split}$$

Why semi-infinite?

These problems are characterized to have a finite number of variables (m) to be determined subject to an infinite number of constraints (recall that Ω is an infinite set).

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Multi-local

Where multi-local plays a role?

One of the major difficulties is to deal with the infinite number of constraints. A simple check of the y^* KKT conditions for optimality requests the computation of all the global optima (the set of global optima is the set of active constraints) for the problem

$$\min_{x \in \Omega} f(x) \equiv -h(y^*, x). \tag{3}$$

Vaz (UMinho - PT)

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

Multi-local

Where multi-local plays a role?

One of the major difficulties is to deal with the infinite number of constraints. A simple check of the y^* KKT conditions for optimality requests the computation of all the global optima (the set of global optima is the set of active constraints) for the problem

$$\min_{x \in \Omega} f(x) \equiv -h(y^*, x). \tag{3}$$

1 Introduction

- 2 Genetic (Evolutionary) algorithm framework
- 3 Genetic algorithm framework for multi-local optimization
- 4 Application to SIP

5 Numerical results

Conclusions

э

(日) (周) (日) (日)

A set of test SIP problems were obtained from the SIPAMPL problem database where problem (3) was considered.

Multi-local problems considered SIP problem Test problem nwatson2 sip_wat2 1 vaz1 sip_vaz1 2 2 vaz3 sip_vaz3 6 priceS6 sip_S6 priceU 6 sip_U

Multi-local problems considered

Since problems were obtained from SIP by replacing y by y^* the global optima is attained at $f^* = 0$.

Vaz (UMinho - PT)

5-8 July 2009 19 / 28

< □ > < □ > < □ > < □ > < □ > < □ >

A set of test SIP problems were obtained from the SIPAMPL problem database where problem (3) was considered.

Multi-local problems considered						
	SIP problem	Test problem	n			
	watson2	sip_wat2	1			
	vaz1	sip_vaz1	2			
	vaz3	sip_vaz3	2			
	priceS6	sip_S6	6			
	priceU	sip_U	6			

Multi-local problems considered

Since problems were obtained from SIP by replacing y by y^* the global optima is attained at $f^* = 0$.

Vaz (UMinho - PT)

5-8 July 2009 19

э

(日) (周) (日) (日)

19 / 28

Additional problems

Other well known problems from global optimization were also considered.

Some details

- 4000 function evaluations allowed (since we have a population algorithm this limit can be slightly exceeded).
- Since we are dealing with a stochastic algorithm we are reporting average values for 10 runs.
- We are considering that a global optima was obtained when the best obtained point is a Lagrangian stationary point.
 - A local optima is obtained if it is a stationary point of the Lagrangian and its objective function value is far away from the best obtained point.

э

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Additional problems

Other well known problems from global optimization were also considered.

Some details

- 4000 function evaluations allowed (since we have a population algorithm this limit can be slightly exceeded).
- Since we are dealing with a stochastic algorithm we are reporting average values for 10 runs.
- We are considering that a global optima was obtained when the best obtained point is a Lagrangian stationary point.
- A local optima is obtained if it is a stationary point of the Lagrangian and its objective function value is far away from the best obtained point.

э

(日) (同) (目) (日)

Additional problems

Other well known problems from global optimization were also considered.

Some details

- 4000 function evaluations allowed (since we have a population algorithm this limit can be slightly exceeded).
- Since we are dealing with a stochastic algorithm we are reporting average values for 10 runs.
- We are considering that a global optima was obtained when the best obtained point is a Lagrangian stationary point.
- A local optima is obtained if it is a stationary point of the Lagrangian and its objective function value is far away from the best obtained point.

э

Additional problems

Other well known problems from global optimization were also considered.

Some details

- 4000 function evaluations allowed (since we have a population algorithm this limit can be slightly exceeded).
- Since we are dealing with a stochastic algorithm we are reporting average values for 10 runs.
- We are considering that a global optima was obtained when the best obtained point is a Lagrangian stationary point.
- A local optima is obtained if it is a stationary point of the Lagrangian and its objective function value is far away from the best obtained point.

3

Additional problems

Other well known problems from global optimization were also considered.

Some details

- 4000 function evaluations allowed (since we have a population algorithm this limit can be slightly exceeded).
- Since we are dealing with a stochastic algorithm we are reporting average values for 10 runs.
- We are considering that a global optima was obtained when the best obtained point is a Lagrangian stationary point.
- A local optima is obtained if it is a stationary point of the Lagrangian and its objective function value is far away from the best obtained point.

3

Additional problems

Other well known problems from global optimization were also considered.

Some details

- 4000 function evaluations allowed (since we have a population algorithm this limit can be slightly exceeded).
- Since we are dealing with a stochastic algorithm we are reporting average values for 10 runs.
- We are considering that a global optima was obtained when the best obtained point is a Lagrangian stationary point.
- A local optima is obtained if it is a stationary point of the Lagrangian and its objective function value is far away from the best obtained point.

3

Numerical results - Version 1

Test functions	n	N_{x^*}	f^*	$f_{mean}(f_{sd})$	N_{glob}	N _{loc}
b2	2	1	0	5.71E-14 (1.81E-13)	1	1
bohachevsky	2	1	0	5.72E-14 (1.81E-13)	1	1
branin	2	3	3.98E-01	3.98E-01 (5.85E-17)	2.9	2.9
dejoung	3	1	0	0.00E+00 (0.00E+00)	1	1
easom	2	1	-1	-1.00E+00 (0.00E+00)	1	58.2
f1	30	1	-1.26E+04	-1.43E+04 (1.04E+01)	0.6	1
goldprice	2	1	3	3.00E+00 (5.11E-04)	0	0
griewank	6	1	0	2.39E-02 (8.69E-03)	1.7	23.2
hartmann3	3	1	-3.86E+00	-3.86E+00 (9.70E-04)	0	1.7
hartmann6	6	1	-3.32E+00	-3.32E+00 (9.72E-07)	0.4	0.9
hump	2	2	0	4.65E-08 (8.59E-13)	1	1.2
hump_camel	2	2	-1.0316285	-1.03E+00 (2.34E-16)	2	6
levy3	2	18	-1.77E+02	-1.77E+02 (0.00E+00)	3.8	11.9
parsopoulos	2	12	0	2.61E-04 (4.19E-04)	0.6	7
rosenbrock10	10	1	0	1.96E+02 (2.58E+02)	0	0
rosenbrock2	2	1	0	3.65E-02 (7.33E-02)	0	0
rosenbrock5	5	1	0	4.74E-01 (1.59E-01)	0	0
shekel10	4	1	-1.05E+01	-7.85E+00 (2.84E+00)	1	4.9
shekel5	4	1	-1.02E+01	-9.65E+00 (1.60E+00)	1	<u>3.2</u>

Vaz (UMinho - PT)

Multi-local Optimization

Numerical results - Version 1 (Cont.)

Test functions	n	N_{x^*}	f^*	$f_{mean}(f_{sd})$	N_{glob}	N_{loc}
shekel7	4	1	-1.04E+01	-7.76E+00 (2.78E+00)	1	4.2
shubert	2	18	-1.87E+02	-1.87E+02 (0.00E+00)	8	15.9
storn1	2	2	-4.08E-01	-4.07E-01 (0.00E+00)	2	3
storn2	2	2	-1.81E+01	-1.81E+01 (3.74E-15)	2	2.2
storn3	2	2	-2.28E+02	-2.28E+02 (6.39E-02)	0	0
storn4	2	2	-2.43E+03	-2.43E+03(8.68E-03)	0	0
storn5	2	2	-2.48E+04	-2.48E+04 (1.85E+01)	0	0
storn6	2	2	-2.49E+05	-2.48E+04 (6.44E+00)	0	0
zakharov10	10	1	0	5.38E-11 (1.11E-10)	1	1
zakharov2	2	1	0	2.65E-12 (2.47E-12)	1	1
zakharov20	20	1	0	5.00E-02 (1.19E-01)	0.1	0.1
zakharov4	4	1	0	3.30E-12 (3.99E-12)	1	1
zakharov5	5	1	0	1.02E-12 (6.34E-13)	1	1
spherical	6	2	1	-3.00E+05 (0.00E+00)	40	40
sip_S6	6	1	0	-9.25E+00 (0.00E+00)	1	15.8
sip_U	6	1	0	-8.00E+00(9.53E-05)	1.2	4.1
sip_vaz1	2	1	0	0.00E+00 (0.00E+00)	74	74
sip_vaz3	2	1	0	0.00E+00 (0.00E+00)	69	69
sip_wat2	1	1	0	-1.11E-01 (_1,46E-17)	, 1	<u></u> 2 ∽ ⊲

Vaz (UMinho - PT)

Multi-local Optimization

5-8 July 2009 22 / 28

Numerical results - Version 2

Test functions	n	N_{x^*}	f^*	$f_{mean}(f_{sd})$	N_{glob}	N _{loc}
b2	2	1	0	1.55E-14 (4.91E-14)	1	1
bohachevsky	2	1	0	-5.55E-17(6.50E-33)	1	1
branin	2	3	3.98E-01	3.98E-01 (5.85E-17)	3	3
dejoung	3	1	0	0.00E+00 (0.00E+00)	1	1
easom	2	1	-1	-1.00E+00 (0.00E+00)	1	58.4
f1	30	1	-1.26E+04	-1.43E+04 (4.01E+01)	0.4	0.5
goldprice	2	1	3	3.00E+00 (1.58E-04)	0	0
griewank	6	1	0	1.70E-02 (1.27E-02)	1.3	21.9
hartmann3	3	1	-3.86E+00	-3.86E+00 (2.42E-03)	0.1	2.1
hartmann6	6	1	-3.32E+00	-3.32E+00 (1.27E-06)	0.2	1.3
hump	2	2	0	4.65E-08 (1.65E-12)	1	1.1
hump_camel	2	2	-1.0316285	-1.03E+00 (2.34E-16)	2	6
levy3	2	18	-1.77E+02	-1.77E+02 (0.00E+00)	2.8	12
parsopoulos	2	12	0	1.14E-04 (2.01E-04)	0.9	7.3
rosenbrock10	10	1	0	3.22E+02 (3.95E+02)	0	0
rosenbrock2	2	1	0	8.74E-02(8.74E-02)	0	0
rosenbrock5	5	1	0	4.41E-01 (2.75E-01)	0	0
shekel10	4	1	-1.05E+01	-8.39E+00 (2.77E+00)	1	5
shekel5	4	1	-1.02E+01	-1.02E+01 (0.00E+00)	1	<u>_</u> 3.7 _{∽ q}

Vaz (UMinho - PT)

Numerical results - Version 2 (cont.)

Test functions	n	N_{x^*}	f^*	$f_{mean}(f_{sd})$	N_{glob}	N_{loc}
shekel7	4	1	-1.04E+01	-9.35E+00 (2.22E+00)	1	4.2
shubert	2	18	-1.87E+02	-1.87E+02 (0.00E+00)	8.2	16.7
storn1	2	2	-4.08E-01	-4.07E-01 (0.00E+00)	2	3
storn2	2	2	-1.81E+01	-1.81E+01(3.74E-15)	2	2.4
storn3	2	2	-2.28E+02	-2.28E+02 (1.14E-01)	0	0
storn4	2	2	-2.43E+03	-2.43E+03 (9.40E-02)	0	0
storn5	2	2	-2.48E+04	-2.48E+04 (7.63E+00)	0	0
storn6	2	2	-2.49E+05	-2.48E+04 (8.09E+00)	0	0
zakharov10	10	1	0	8.07E-11 (1.41E-10)	1	1
zakharov2	2	1	0	1.86E-12 (1.78E-12)	1	1
zakharov20	20	1	0	4.35E-02 (5.63E-02)	0	0
zakharov4	4	1	0	3.29E-11 (8.68E-11)	1	1
zakharov5	5	1	0	9.71E-13 (1.67E-12)	1	1
spherical	6	2	1	-3.00E+05 (0.00E+00)	40	40
sip_S6	6	1	0	-9.25E+00 (0.00E+00)	1	15.7
sip_U	6	1	0	-8.00E+00 (3.91E-04)	1.5	4
sip_vaz1	2	1	0	0.00E+00 (0.00E+00)	72.3	72.3
sip_vaz3	2	1	0	0.00E+00 (0.00E+00)	69.5	69.6
sip_wat2	1	1	0	-1.11E-01 (_1,46E-17)	, 1	<u>_</u> 2.1

Vaz (UMinho - PT)

Multi-local Optimization

5-8 July 2009 24 / 28

Version 1 versus Version 2

Vaz (UMinho - PT)

Introduction

- 2 Genetic (Evolutionary) algorithm framework
- 3 Genetic algorithm framework for multi-local optimization
- 4 Application to SIP
- 5 Numerical results

э

(日) (周) (日) (日)

• We propose an algorithm for multi-local optimization (with two versions).

- The proposed algorithm uses a neighborhood concept for the *fitness* function. One version considered the dominance concept from multi-objective optimization.
- The algorithms use a quasi-Newton step in order to accelerate the convergence to local optima.
- We provide numerical results for the implemented algorithm and a compare between the two versions.
- Version 2 (with the dominance concept from multi-objective) proved to be (slightly) less efficient than version 1.

(日) (周) (日) (日)

- We propose an algorithm for multi-local optimization (with two versions).
- The proposed algorithm uses a neighborhood concept for the *fitness* function. One version considered the dominance concept from multi-objective optimization.
- The algorithms use a quasi-Newton step in order to accelerate the convergence to local optima.
- We provide numerical results for the implemented algorithm and a compare between the two versions.
- Version 2 (with the dominance concept from multi-objective) proved to be (slightly) less efficient than version 1.

- We propose an algorithm for multi-local optimization (with two versions).
- The proposed algorithm uses a neighborhood concept for the *fitness* function. One version considered the dominance concept from multi-objective optimization.
- The algorithms use a quasi-Newton step in order to accelerate the convergence to local optima.
- We provide numerical results for the implemented algorithm and a compare between the two versions.
- Version 2 (with the dominance concept from multi-objective) proved to be (slightly) less efficient than version 1.

- We propose an algorithm for multi-local optimization (with two versions).
- The proposed algorithm uses a neighborhood concept for the *fitness* function. One version considered the dominance concept from multi-objective optimization.
- The algorithms use a quasi-Newton step in order to accelerate the convergence to local optima.
- We provide numerical results for the implemented algorithm and a compare between the two versions.
- Version 2 (with the dominance concept from multi-objective) proved to be (slightly) less efficient than version 1.

- We propose an algorithm for multi-local optimization (with two versions).
- The proposed algorithm uses a neighborhood concept for the *fitness* function. One version considered the dominance concept from multi-objective optimization.
- The algorithms use a quasi-Newton step in order to accelerate the convergence to local optima.
- We provide numerical results for the implemented algorithm and a compare between the two versions.
- Version 2 (with the dominance concept from multi-objective) proved to be (slightly) less efficient than version 1.

END

email: aivaz@dps.uminho.pt Web http://www.norg.uminho.pt/aivaz

email: lac@dps.uminho.pt Web http://pessoais.dps.uminho.pt/lac

Supported by FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR Portugal

Vaz (UMinho - PT)

Multi-local Optimization

5-8 July 2009 28 / 28

э

イロト イポト イヨト イヨト

EURO XXIV LISBON 24th European Conference on Operational Research July 11-14

