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Introduction Problem

Addressed problem
The following problem is under consideration

min
x∈Ω⊂Rn

f(x) (1)

where f(x) is the objective function, x = (x1, . . . , xn)T is an n dimensional
vector and Ω ⊂ Rn is the feasible set, herein assumed to be a cartesian
product of intervals with finite bounds (Ω = [α1, β1]× · · · × [αn, βn]).

Multi-local
We aim to compute approximations to all the local optima for problem (1).

Assumptions

f(x) is assumed to be twice continuous differentiable and cheap to evaluate
(i.e. the number of objective function evaluations is not a concern).
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Genetic (Evolutionary) algorithm framework

Algorithm framework

Genetic algorithms
A genetic algorithm is a population based algorithm that uses techniques
inspired by evolutionary biology such as inheritance, mutation, selection,
and crossover.

A GA framework
1 Randomly initialize an initial population (real-parameter

representation).

2 Compute a set of Parents from the elite population using a fitness
function (tournament selection).

3 Compute a set of Offsprings obtained from the set of Parents using
the crossover and mutation operators.

4 Verify the stopping criteria. If not met then goto step 2.
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Genetic (Evolutionary) algorithm framework

Typical Operators

The fitness function
Usually the fitness function corresponds to the objective function. The
points in the population are sorted by the objective function value.

The Tournament Selection
Tournaments are played between points and the better solution is chosen
as a Parent (survival of the fittest). The process is repeated until the set of
Parents is fulfilled.
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Genetic (Evolutionary) algorithm framework

Typical Operators

The crossover operator

Simulated Binary Crossover (SBX) that simulates the working principle of
single-point crossover operator for binary strings.

The mutation operator
Polynomial mutation that guarantees that the probability of creating a
point closer to the parent is more than the probability of creating one away
from it.
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Genetic algorithm framework for multi-local optimization

The proposed fitness function

The fitness function
The use of the objective function as the fitness function may no longer be
appropriate.

The proposed fitness function - Version 1

Points in the population that are nearby each other (e.g. using the
Euclidean distance) are assigned a huge fitness value, since diversity near a
local optima is not requested.

The objective function is used as the fitness function.
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Genetic algorithm framework for multi-local optimization

The proposed fitness function

The proposed fitness function - Version 2
The second version of the proposed fitness function uses some concepts
from the multiobjective (biobjective) optimization.

The dominance concept

Let f1(x) (≡ f(x)) and f2(x) (≡ ||∇L(x, λ)||a) be two objective
functions. A point x is said to dominate a point y (x ≺ y) if

fi(x) ≤ fi(y), i = 1, 2 and ∃j such that fj(x) < fj(y). (2)

If the conditions in (2) are not verified we simply say that x does not
dominate y (x ⊀ y).

aL(x, λ) is the Lagrangian function with Lagrange multipliers λ.
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Genetic algorithm framework for multi-local optimization

The proposed fitness function

Lagrangian computation
Since we are dealing with a simple bound constrained problem the norm of
the Lagrangian gradient can be computed without explicitly knowing the
Lagrange multipliers.

The proposed fitness function - Version 2

Points in the population not dominated by any other point (in the
population) is assigned rank 1 (fitness equal to 1) and removed from the
fitness computation. Points thereafter not dominated by any other point
(in the remaining point of the population) is assigned rank 2. The
procedure is repeated until no point are left to assign a rank.

A point x only dominates a point y if it satisfies relations (2) and is within
a specified Euclidian distance.
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Genetic algorithm framework for multi-local optimization The quasi-Newton iterations

Quasi-Newton iterations

A quasi-Newton iteration is performed for each point in the elite
population:

a BFGS update formula to approximate the inverse Lagrangian
Hessian is used.
The identity matrix is used whenever a new point enters the elite
population.
A point kept in the elite population performs a sequence of
quasi-Newton iterations (independently of the fitness).
a line search strategy is used together with an Armijo like rule in order
to globalize the algorithm.
A reset strategy (setting the approximation to the identity matrix) is
performed each n successive iterations and the inverse Lagrangian
Hessian approximation is not updated if the denominator of the
updating formula is, in absolute value, lower than a specified tolerance.
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Genetic algorithm framework for multi-local optimization The quasi-Newton iterations

The algorithm

The GA can be described as follows

MLOCGAMO
1 Randomly initialize the initial population E0. Set k = 0 as the

iteration counter.
2 While the number of iterations and objective function evaluations is

below the given maxima then
Compute the set of parents Pk from the elite population Ek using a
fitness function (selection);
Compute the Offspring Ok from the parent population Pk using the
crossover and mutation operators;
Apply a quasi-Newton iteration for all the points in the elite set Ek.
Compute the new elite set Ek+1 by selecting points from Ek

⋃
Ok with

the best fitness. For points with the same fitness value the ones with
lower objective function value are selected.
Set k = k + 1.
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Application to SIP

Definition

A semi-infinite programming problem can be described in the following
form:

SIP

min
y∈Rm

g(y),

s.t. h(y, x) ≤ 0
∀x ∈ Ω ⊂ Rn.

Why semi-infinite?

These problems are characterized to have a finite number of variables (m)
to be determined subject to an infinite number of constraints (recall that Ω
is an infinite set).
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Application to SIP

Multi-local

Where multi-local plays a role?
One of the major difficulties is to deal with the infinite number of
constraints. A simple check of the y∗ KKT conditions for optimality
requests the computation of all the global optima (the set of global optima
is the set of active constraints) for the problem

min
x∈Ω

f(x) ≡ −h(y∗, x). (3)

For ȳ to be feasible:

h(ȳ, x) ≤ 0
∀x ∈ Ω
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Numerical results

Test problems

A set of test SIP problems were obtained from the SIPAMPL problem
database where problem (3) was considered.

Multi-local problems considered

SIP problem Test problem n

watson2 sip_wat2 1
vaz1 sip_vaz1 2
vaz3 sip_vaz3 2
priceS6 sip_S6 6
priceU sip_U 6

Multi-local problems considered
Since problems were obtained from SIP by replacing y by y∗ the global
optima is attained at f∗ = 0.
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Numerical results

Test problems

Additional problems
Other well known problems from global optimization were also considered.

Some details
4000 function evaluations allowed (since we have a population
algorithm this limit can be slightly exceeded).
Since we are dealing with a stochastic algorithm we are reporting
average values for 10 runs.
We are considering that a global optima was obtained when the best
obtained point is a Lagrangian stationary point.
A local optima is obtained if it is a stationary point of the Lagrangian
and its objective function value is far away from the best obtained
point.
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Numerical results

Numerical results - Version 1
Test functions n Nx∗ f∗ fmean(fsd) Nglob Nloc

b2 2 1 0 5.71E-14 ( 1.81E-13 ) 1 1
bohachevsky 2 1 0 5.72E-14 ( 1.81E-13 ) 1 1
branin 2 3 3.98E-01 3.98E-01 ( 5.85E-17 ) 2.9 2.9
dejoung 3 1 0 0.00E+00 ( 0.00E+00 ) 1 1
easom 2 1 -1 -1.00E+00 ( 0.00E+00 ) 1 58.2
f1 30 1 -1.26E+04 -1.43E+04 ( 1.04E+01 ) 0.6 1
goldprice 2 1 3 3.00E+00 ( 5.11E-04 ) 0 0
griewank 6 1 0 2.39E-02 ( 8.69E-03 ) 1.7 23.2
hartmann3 3 1 -3.86E+00 -3.86E+00 ( 9.70E-04 ) 0 1.7
hartmann6 6 1 -3.32E+00 -3.32E+00 ( 9.72E-07 ) 0.4 0.9
hump 2 2 0 4.65E-08 ( 8.59E-13 ) 1 1.2
hump_camel 2 2 -1.0316285 -1.03E+00 ( 2.34E-16 ) 2 6
levy3 2 18 -1.77E+02 -1.77E+02 ( 0.00E+00 ) 3.8 11.9
parsopoulos 2 12 0 2.61E-04 ( 4.19E-04 ) 0.6 7
rosenbrock10 10 1 0 1.96E+02 ( 2.58E+02 ) 0 0
rosenbrock2 2 1 0 3.65E-02 ( 7.33E-02 ) 0 0
rosenbrock5 5 1 0 4.74E-01 ( 1.59E-01 ) 0 0
shekel10 4 1 -1.05E+01 -7.85E+00 ( 2.84E+00 ) 1 4.9
shekel5 4 1 -1.02E+01 -9.65E+00 ( 1.60E+00 ) 1 3.2
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Numerical results

Numerical results - Version 1 (Cont.)
Test functions n Nx∗ f∗ fmean(fsd) Nglob Nloc

shekel7 4 1 -1.04E+01 -7.76E+00 ( 2.78E+00 ) 1 4.2
shubert 2 18 -1.87E+02 -1.87E+02 ( 0.00E+00 ) 8 15.9
storn1 2 2 -4.08E-01 -4.07E-01 ( 0.00E+00 ) 2 3
storn2 2 2 -1.81E+01 -1.81E+01 ( 3.74E-15 ) 2 2.2
storn3 2 2 -2.28E+02 -2.28E+02 ( 6.39E-02 ) 0 0
storn4 2 2 -2.43E+03 -2.43E+03 ( 8.68E-03 ) 0 0
storn5 2 2 -2.48E+04 -2.48E+04 ( 1.85E+01 ) 0 0
storn6 2 2 -2.49E+05 -2.48E+04 ( 6.44E+00 ) 0 0
zakharov10 10 1 0 5.38E-11 ( 1.11E-10 ) 1 1
zakharov2 2 1 0 2.65E-12 ( 2.47E-12 ) 1 1
zakharov20 20 1 0 5.00E-02 ( 1.19E-01 ) 0.1 0.1
zakharov4 4 1 0 3.30E-12 ( 3.99E-12 ) 1 1
zakharov5 5 1 0 1.02E-12 ( 6.34E-13 ) 1 1
spherical 6 2 1 -3.00E+05 ( 0.00E+00 ) 40 40
sip_S6 6 1 0 -9.25E+00 ( 0.00E+00 ) 1 15.8
sip_U 6 1 0 -8.00E+00 ( 9.53E-05 ) 1.2 4.1
sip_vaz1 2 1 0 0.00E+00 ( 0.00E+00 ) 74 74
sip_vaz3 2 1 0 0.00E+00 ( 0.00E+00 ) 69 69
sip_wat2 1 1 0 -1.11E-01 ( 1.46E-17 ) 1 2
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Numerical results

Numerical results - Version 2
Test functions n Nx∗ f∗ fmean(fsd) Nglob Nloc

b2 2 1 0 1.55E-14 ( 4.91E-14 ) 1 1
bohachevsky 2 1 0 -5.55E-17 ( 6.50E-33 ) 1 1
branin 2 3 3.98E-01 3.98E-01 ( 5.85E-17 ) 3 3
dejoung 3 1 0 0.00E+00 ( 0.00E+00 ) 1 1
easom 2 1 -1 -1.00E+00 ( 0.00E+00 ) 1 58.4
f1 30 1 -1.26E+04 -1.43E+04 ( 4.01E+01 ) 0.4 0.5
goldprice 2 1 3 3.00E+00 ( 1.58E-04 ) 0 0
griewank 6 1 0 1.70E-02 ( 1.27E-02 ) 1.3 21.9
hartmann3 3 1 -3.86E+00 -3.86E+00 ( 2.42E-03 ) 0.1 2.1
hartmann6 6 1 -3.32E+00 -3.32E+00 ( 1.27E-06 ) 0.2 1.3
hump 2 2 0 4.65E-08 ( 1.65E-12 ) 1 1.1
hump_camel 2 2 -1.0316285 -1.03E+00 ( 2.34E-16 ) 2 6
levy3 2 18 -1.77E+02 -1.77E+02 ( 0.00E+00 ) 2.8 12
parsopoulos 2 12 0 1.14E-04 ( 2.01E-04 ) 0.9 7.3
rosenbrock10 10 1 0 3.22E+02 ( 3.95E+02 ) 0 0
rosenbrock2 2 1 0 8.74E-02 ( 8.74E-02 ) 0 0
rosenbrock5 5 1 0 4.41E-01 ( 2.75E-01 ) 0 0
shekel10 4 1 -1.05E+01 -8.39E+00 ( 2.77E+00 ) 1 5
shekel5 4 1 -1.02E+01 -1.02E+01 ( 0.00E+00 ) 1 3.7
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Numerical results

Numerical results - Version 2 (cont.)
Test functions n Nx∗ f∗ fmean(fsd) Nglob Nloc

shekel7 4 1 -1.04E+01 -9.35E+00 ( 2.22E+00 ) 1 4.2
shubert 2 18 -1.87E+02 -1.87E+02 ( 0.00E+00 ) 8.2 16.7
storn1 2 2 -4.08E-01 -4.07E-01 ( 0.00E+00 ) 2 3
storn2 2 2 -1.81E+01 -1.81E+01 ( 3.74E-15 ) 2 2.4
storn3 2 2 -2.28E+02 -2.28E+02 ( 1.14E-01 ) 0 0
storn4 2 2 -2.43E+03 -2.43E+03 ( 9.40E-02 ) 0 0
storn5 2 2 -2.48E+04 -2.48E+04 ( 7.63E+00 ) 0 0
storn6 2 2 -2.49E+05 -2.48E+04 ( 8.09E+00 ) 0 0
zakharov10 10 1 0 8.07E-11 ( 1.41E-10 ) 1 1
zakharov2 2 1 0 1.86E-12 ( 1.78E-12 ) 1 1
zakharov20 20 1 0 4.35E-02 ( 5.63E-02 ) 0 0
zakharov4 4 1 0 3.29E-11 ( 8.68E-11 ) 1 1
zakharov5 5 1 0 9.71E-13 ( 1.67E-12 ) 1 1
spherical 6 2 1 -3.00E+05 ( 0.00E+00 ) 40 40
sip_S6 6 1 0 -9.25E+00 ( 0.00E+00 ) 1 15.7
sip_U 6 1 0 -8.00E+00 ( 3.91E-04 ) 1.5 4
sip_vaz1 2 1 0 0.00E+00 ( 0.00E+00 ) 72.3 72.3
sip_vaz3 2 1 0 0.00E+00 ( 0.00E+00 ) 69.5 69.6
sip_wat2 1 1 0 -1.11E-01 ( 1.46E-17 ) 1 2.1

Vaz (UMinho - PT) Multi-local Optimization 5-8 July 2009 24 / 28



Numerical results

Version 1 versus Version 2
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Conclusions

Conclusions

We propose an algorithm for multi-local optimization (with two
versions).
The proposed algorithm uses a neighborhood concept for the fitness
function. One version considered the dominance concept from
multi-objective optimization.
The algorithms use a quasi-Newton step in order to accelerate the
convergence to local optima.
We provide numerical results for the implemented algorithm and a
compare between the two versions.
Version 2 (with the dominance concept from multi-objective) proved
to be (slightly) less efficient than version 1.
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