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Why Derivative-Free Optimization?

Some of the reasons to apply derivative-free optimization are the following:

o Nowadays computer hardware and mathematical algorithms allows
increasingly large simulations.
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Why Derivative-Free Optimization?

Some of the reasons to apply derivative-free optimization are the following:
o Nowadays computer hardware and mathematical algorithms allows
increasingly large simulations.

e Functions are noisy (one cannot trust derivatives or approximate them
by finite differences).

@ Binary codes (source code not available) and random simulations —
making automatic differentiation impossible to apply.

@ Legacy codes (written in the past and not maintained by the original
authors).

@ Lack of sophistication of the user (users need improvement but want
to use something simple).
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Direct-search methods

Definition
@ Sample the objective function at a finite number of points at each
iteration.
@ Base actions on those function values.

@ Do not depend on derivative approximation or model building.

@ Direct search of directional type: Achieve descent by using positive
spanning sets and moving in the directions of the best points.
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Direct search for single objective

Derivative-free optimization

Problem formulation (single objective)
min f(z)

where
Q={zxeR": ¢ <z <u}

[:R" > RU{+}, £ € (RU{—00})" and u € (R U {400})"

We aim at solving this problem without using derivatives of f.
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Some definitions

Positive spanning set

Is a set of vectors that spans R™ with nonnegative coefficients.

Examples

Dg ={e1,...,en,—€1,...,—€pn}

Dg ={e1,...,en,—€1,...,—€n,e,—e€}

Extreme barrier function

fQ(:U):{ flx) if z€Q,

400 otherwise.
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A direct-search method

(0) Initialization
Choose xg € 2, ag > 0.

Let D be a (possibly infinite) set of positive spanning sets.
For k=0,1,2,...

(1) Search step (Optional)
Try to compute a point z, using a finite number of trial points, in the grid
_ | Dk |
My, = {zp + apDz, 2 € Ny

with D, € D and fq(z) < f(xg).
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Direct search for single objective

A direct-search method

(0) Initialization
Choose xg € 2, ag > 0.

Let D be a (possibly infinite) set of positive spanning sets.
For k=0,1,2,...

(1) Search step (Optional)
Try to compute a point z, using a finite number of trial points, in the grid

M, = {xk + apDrz, z € Nl)Dk‘}

with D, € D and fq(z) < f(xg).

If fa(z) < f(zk) then set z;.1; = =, declare the iteration and the search
step successful, and skip the poll step.
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A direct-search method

(2) Poll step
Optionally order the poll set P, = {zx + axd, d € Dy} with Dy C D.
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If a poll point xy + aydy is found such that fq(zx + ardi) < f(xy) then

stop polling, set x; 1 = 2 + ayd, and declare the iteration and the poll
step successful.
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A direct-search method

(2) Poll step
Optionally order the poll set P, = {zx + axd, d € Dy} with Dy C D.

If a poll point xy + aydy is found such that fq(zx + ardi) < f(xy) then
stop polling, set x; 1 = 2 + ayd, and declare the iteration and the poll
step successful.

Otherwise declare the iteration (and the poll step) unsuccessful and set

Lh+1 = Tk-
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Direct search for single objective

A direct-search method

(3) Step size update: If the iteration was successful then maintain the
step size parameter (a1 = ay) or double it (g1 = 2ay) after two
consecutive poll successes along the same direction.
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Direct search for single objective

A direct-search method

(3) Step size update: If the iteration was successful then maintain the
step size parameter (a1 = ay) or double it (g1 = 2ay) after two
consecutive poll successes along the same direction.

If the iteration was unsuccessful, halve the step size parameter
(Oék+1 e Oék/2).
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Direct search for single objective

Some comments

We could present the previous algorithm in a different form, namely by

o fixing the set Dy (Dy = D, VEk) not to change with the iteration
number (problem with only bound constraints).
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Some comments

We could present the previous algorithm in a different form, namely by
o fixing the set Dy (Dy = D, VEk) not to change with the iteration
number (problem with only bound constraints).

@ allowing the set Dy to be computed in a way to conform with possible
linear constraints.

e to use a forcing function p(-) (e.g., p(t) = t?) instead of a integer
lattice (the mesh Mj). A forcing function p(-) is continuous, positive,
and satisfies lim; o+ p(t)/t = 0 and p(t1) < p(t2) if t1 < ta.

A point z is accepted (successful) in the search step if
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Direct search for single objective

Some comments

We could present the previous algorithm in a different form, namely by
o fixing the set Dy (Dy = D, VEk) not to change with the iteration
number (problem with only bound constraints).

@ allowing the set Dy to be computed in a way to conform with possible
linear constraints.

e to use a forcing function p(-) (e.g., p(t) = t?) instead of a integer
lattice (the mesh Mj). A forcing function p(-) is continuous, positive,
and satisfies lim; o+ p(t)/t = 0 and p(t1) < p(t2) if t1 < ta.

A point z is accepted (successful) in the search step if

fa(r) < fazx) — pla).

The presented algorithm just suits for the multiobjective version to be
described.
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Direct search for multiobjective

Derivative-free multiobjective optimization

MOO problem
min F(z) = (f1(2), fa(@), -, fn ()T
where
Q={zeR": (¢ <z <u}
fi :R* - RU{+o00}, j=1,...,m,
e (RU{—oco})” and u € (RU {400})"

@ Several objectives, often conflicting.
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MOO problem
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Direct search for multiobjective

Derivative-free multiobjective optimization

MOO problem
glel(r)lF(x) = (fl(‘r)an(x)a ooc 7fm(x))—r
where
Q={zeR": (¢ <z <u}
fi :R* - RU{+o00}, j=1,...,m,
e (RU{—oco})” and u € (RU {400})"

@ Several objectives, often conflicting.
e Functions with unknown derivatives.
@ Expensive function evaluations, possibly subject to noise.

@ Impractical to compute approximations to derivatives.
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DMS algorithmic main lines

@ Does not aggregate any of the objective functions.
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Direct search for multiobjective

DMS algorithmic main lines

@ Does not aggregate any of the objective functions.

@ Generalizes ALL direct-search methods of directional type to MOO.

@ Makes use of search/poll paradigm.
@ Implements an optional search step (only to disseminate the search).
@ Tries to capture the whole Pareto front from the polling procedure.
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DMS algorithmic main lines

o Keeps a list of feasible nondominated points.
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DMS algorithmic main lines

o Keeps a list of feasible nondominated points.

@ Poll centers are chosen from the list.

@ Successful iterations correspond to list changes.
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DMS search & poll steps

@ Evaluate a finite set of feasible points < Lg4q4.
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DMS search & poll steps

@ Evaluate a finite set of feasible points < Lg4q4.
@ Remove dominated points from Lj, U Laqq — L fittered-

@ Select list of feasible nondominated points < L;,jq;.

Compare Lyyjq to Ly (success if Lyyiq 7 Ly, unsuccess otherwise).
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Direct MultiSearch for MOO

(0) Initialization Choose xy € Q with F(zg) < +00, ag > 0. Set
Lo = {(z0; a0)}.
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Direct MultiSearch for MOO

(0) Initialization Choose xy € Q with F(zg) < +00, ag > 0. Set
Lo = {(z0; a0)}.

Let D be a (possibly infinite) set of positive spanning sets.

For k=0,1,2,...
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Direct search for multiobjective

Direct MultiSearch for MOO

(0) Initialization Choose xy € Q with F(zg) < +00, ag > 0. Set
Lo = {(z0; a0)}.

Let D be a (possibly infinite) set of positive spanning sets.
For k=0,1,2,...
(1) Selection of iterate point

Order Ly and select (zy;ax) € Ly.
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Direct search for multiobjective

Direct MultiSearch for MOO
(2) Search step (Optional)

Evaluate a finite set of points Lyqq = {(2s; @) }ses (in the mesh or using a
forcing function).

(LriLada) = Lyitered = Lirial
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Direct search for multiobjective

Direct MultiSearch for MOO
(2) Search step (Optional)

Evaluate a finite set of points Lyqq = {(2s; @) }ses (in the mesh or using a
forcing function).

(LriLada) = Lyitered = Lirial

If success is achieved then set L; .| = L., declare the iteration and the
search step successful, and skip the poll step.
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Direct MultiSearch for MOO

(3) Poll step Evaluate Ly4q = {(xx + ard; o), d € Dy}, with Dy, C D
(Li;Ladd) = Lfitterea — Ltrial
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Direct MultiSearch for MOO

(3) Poll step Evaluate Ly4q = {(xx + ard; o), d € Dy}, with Dy, C D
(Li;Ladd) = Lfitterea — Ltrial

If success is achieved then set L.y = L., declare the iteration and the
poll step successful
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Direct search for multiobjective

Direct MultiSearch for MOO

(3) Poll step Evaluate Ly4q = {(xx + ard; o), d € Dy}, with Dy, C D
(Li;Ladd) = Lfitterea — Ltrial

If success is achieved then set L.y = L., declare the iteration and the
poll step successful

Otherwise declare the iteration (and the poll step) unsuccessful and set
LkJrl - Lt'rial
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Direct search for multiobjective

Direct MultiSearch for MOO

(4) Step size update: If the iteration was successful then maintain the

step size parameter (a1 = ay) or double it (g1 = 2ay) after two
consecutive poll successes along the same direction.
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Direct search for multiobjective

Direct MultiSearch for MOO

(4) Step size update: If the iteration was successful then maintain the
step size parameter (a1 = ay) or double it (g1 = 2ay) after two
consecutive poll successes along the same direction.

If the iteration was unsuccessful, halve the step size parameter
(Oék+1 e Oék/2).

A.LF. Vaz (UMinho) DMS
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Numerical Example — Problem SP1 [Huband et al.]

Iteration 0

2

f1

¢ Evaluated points since beginning.
Current iterate list.
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Direct search for multiobjective

Numerical example — problem SP1 [Huband et al ]

Iteration 1
¢
™ 4
e ¢
=3
Q
Q ;
f1

¢ Evaluated poll points.
¢ Evaluated points since beginning.
Current iterate list.

A.LF. Vaz (UMinho) DMS October 21, 2010 39 / 64



Numerical example — problem SP1 [Huband et al ]

Iteration 2
4
™ ¢
I ¢
=3
Q
Q ;
f1

¢ Evaluated poll points.
¢ Evaluated points since beginning.
Current iterate list.
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Numerical example — problem SP1 [Huband et al ]

Iteration 10
¢
IS .
L. ¢
CRRS
Qe o0 ¢ ¢
00 ‘O’ 1‘ : : -
f1

¢ Evaluated poll points.
¢ Evaluated points since beginning.
Current iterate list.
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Direct search for multiobjective

Numerical example — problem SP1 [Huband et al ]

Iteration 20
L 4
¢
i ¢
¢ ¢
f1

¢ Evaluated poll points.
¢ Evaluated points since beginning.
Current iterate list.
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Direct search for multiobjective

Numerical example — problem SP1 [Huband et al ]

Iteration 100

¢ Evaluated poll points.
¢ Evaluated points since beginning.
Current iterate list.
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Direct search for multiobjective

Refining subsequences and directions

For both globalization strategies (using the mesh or the forcing function in
the search step), one also has:

Theorem (existence of refining subsequences)

There is at least a convergent subsequence of iterates {xy }rck
corresponding to unsuccessful poll steps, such that o, — 0 in K.
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the search step), one also has:

Theorem (existence of refining subsequences)

There is at least a convergent subsequence of iterates {xy }rck
corresponding to unsuccessful poll steps, such that o, — 0 in K.

Definition

Let x, be the limit point of a convergent refining subsequence.
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Direct search for multiobjective

Refining subsequences and directions

For both globalization strategies (using the mesh or the forcing function in
the search step), one also has:

Theorem (existence of refining subsequences)

There is at least a convergent subsequence of iterates {xy }rck
corresponding to unsuccessful poll steps, such that o, — 0 in K.

Definition

Let x, be the limit point of a convergent refining subsequence.

Refining directions for x,. are limit points of {dy/||dx||}rex where dj. € Dy,
and xp, + agd;. € Q.
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Direct search for multiobjective

Pareto-Clarke critical point

Let us focus (again for simplicity) on the unconstrained case, 2 = R".

Definition

Zy Is @ Pareto-Clarke critical point of F' (Lipschitz continuous near x.) if

vd € R, 3j = j(d), f3 (@i d) > 0.
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Analysis of DMS

Assumption
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Analysis of DMS

Assumption
o {xp}rek refining subsequence converging to .

@ F' Lipschitz continuous near z,.

Theorem
If v is a refining direction for x, then

3 = j(d) : F(waid) = 0.
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Direct search for multiobjective

Analysis of DMS

Theorem

If the set of refining directions for . is dense in R™, then z, is a
Pareto-Clarke critical point.

Notes

@ When m = 1, we obtain the result presented before.

@ This convergence analysis is valid for multiobjective problems with
general nonlinear constraints.
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Numerical testing framework

Problems

@ 100 bound constrained MOO problems (AMPL models available
at http://www.mat.uc.pt/dms).
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Numerical results

Numerical testing framework

Problems

@ 100 bound constrained MOO problems (AMPL models available
at http://www.mat.uc.pt/dms).

@ Number of variables between 1 and 30.
@ Number of objectives between 2 and 4.
Solvers

@ DMS tested against 8 different MOO solvers (complete results
available at http://www.mat.uc.pt/dms).

@ Results reported only for
AMOSA - simulated annealing code.
BIMADS — based on Mesh Adaptive Direct Search.
NSGA-II (C version) — genetic algorithm code.

All solvers tested with default values.
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Numerical results

DMS numerical options
@ No search step.
o List initialization: sample along the line /—u.
@ List selection: all current nondominated points.

@ List ordering: new points added at the end of the list, poll center
moved to the end of the list.

e Positive basis: [ — I].
@ Step size parameter: ag = 1, halved at unsuccessful iterations.

Stopping criteria: minimum step size of 1073 or a maximum of 20000
function evaluations.
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Numerical results

Performance metrics — Purity

F, s (approximated Pareto front computed by solver s for problem p).

F,, (approximated Pareto front computed for problem p, using results for all
solvers).

Purity value for solver s on problem p:

[Eps 0 Fp|
!F, '
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Numerical results

Performance profiles [Dolan and Moré]

Let ¢, s be a metric for which lower values indicate better performance.

Consider

{peP:rps <7}
Ps\T) =

with rp s =t s/ min{t, , : s € S}, where S is the set of solvers and P is
the set of problems.
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Numerical results

Performance profiles [Dolan and Moré]

Let ¢, s be a metric for which lower values indicate better performance.

Consider | P <l
pE Tps ST
Ps\T) =

with rp s =t s/ min{t, , : s € S}, where S is the set of solvers and P is
the set of problems.

Incorporates results for all problems and all solvers.

Allows to access ‘efficiency’ and robustness.

°

°

@ ps(1) represents ‘efficiency’ of solver s.

@ ps(7), with 7 large, gives robustness of solver s.
°

The lower the value t, s the better.
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Comparing DMS to other solvers (Purity)

Purity performance profile
1 T T
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Comparing DMS to other solvers (Purity)

Purity performance profile with the best of 10 runs
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Purity performance profile with the best of 10 runs
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Numerical results

Performance metrics — Spread

Gamma Metric
(largest gap in the Pareto
front)

Fp,s - maXiG{O,...,N} {dz}

Delta Metric
(uniformity of gaps in the
Pareto front)

A _ d0+dN+Z7];V:_11‘dijJ|
Ps T T dotdn+(N—1)d

where d is the d; average
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Comparing DMS to other solvers (Spread)

Average I performance profile for 10 runs

I I I I ‘-i "_f:¢¥f1
v Ee”g,@*'é 1l I
Ag Aﬁ- b {038
4+ H07
qt H0.6
qt 405 =
4t H0.4
qr 10.3
qr H0.2
—e— DMIS (,line )
O BMADS HE H0.1
=@ = NSGA-II (C version)
~A~ AMOSA
| | | | | . . o
40 60 80 100 120 140 160 500 1000 1500
T T

Gamma Metric (largest gap in the Pareto front)
Fp,s = maxie{o,...,N}{di}

A.LF. Vaz (UMinho) DMS October 21, 2010 57 / 64



Comparing DMS to other solvers (Spread)

Average A performance profile for 10 runs
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Data profiles [Moré and Wild]

Indicate how likely is an algorithm to ‘solve’ a problem, given some
computational budget.

Let hy, s be the number of function evaluations required for solver s to solve
problem p.

Consider peP:h . <ol
pE thps S0
d = ’
() 7
Problem solved to e-accuracy:
BBl
[Fpl/1S]
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Numerical results

Comparing DMS to other solvers

Data profile with the best of 10 runs (e=0.1)
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Numerical results

Comparing DMS to other solvers

Data profile with the best of 10 runs (¢=0.5)
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@ Development and analysis of a novel approach (Direct MultiSearch)
for MOO, generalizing ALL direct-search methods.

@ Direct MultiSearch (DMS) exhibits highly competitive numerical
results for MOO.

DMS (Matlab implementation) and problems (coded in AMPL) freely
available at: http://www.mat.uc.pt/dms.

A. L. Custédio, J. F. A. Madeira, A. |. F. Vaz, and L. N. Vicente, Direct
multisearch for multiobjective optimization, preprint 10-18, Dept. of
Mathematics, Univ. Coimbra, 2010.
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