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Introduction

Why Derivative-Free Optimization?

Some of the reasons to apply derivative-free optimization are the following:

Nowadays computer hardware and mathematical algorithms allows
increasingly large simulations.
Functions are noisy (one cannot trust derivatives or approximate them
by finite differences).
Binary codes (source code not available) and random simulations —
making automatic differentiation impossible to apply.
Legacy codes (written in the past and not maintained by the original
authors).
Lack of sophistication of the user (users need improvement but want
to use something simple).
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Direct search

Direct-search methods

Definition
Sample the objective function at a finite number of points at each
iteration.
Base actions on those function values.
Do not depend on derivative approximation or model building.

Direct search of directional type: Achieve descent by using positive
spanning sets and moving in the directions of the best points.
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Direct search for single objective

Derivative-free optimization

Problem formulation (single objective)

min
x∈Ω

f(x)

where
Ω = {x ∈ Rn : ` ≤ x ≤ u}

f : Rn → R ∪ {+∞}, ` ∈ (R ∪ {−∞})n and u ∈ (R ∪ {+∞})n

We aim at solving this problem without using derivatives of f .
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Direct search for single objective

Some definitions

Positive spanning set
Is a set of vectors that spans Rn with nonnegative coefficients.

Examples

D⊕ = {e1, . . . , en,−e1, . . . ,−en}

D⊗ = {e1, . . . , en,−e1, . . . ,−en, e,−e}

Extreme barrier function

fΩ(x) =
{
f(x) if x ∈ Ω,
+∞ otherwise.
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Direct search for single objective

A direct-search method

(0) Initialization
Choose x0 ∈ Ω, α0 > 0.

Let D be a (possibly infinite) set of positive spanning sets.

For k = 0, 1, 2, . . .

(1) Search step (Optional)
Try to compute a point x, using a finite number of trial points, in the grid

Mk =
{
xk + αkDkz, z ∈ N|Dk|

0

}
with Dk ⊆ D and fΩ(x) < f(xk).

If fΩ(x) < f(xk) then set xk+1 = x, declare the iteration and the search
step successful, and skip the poll step.
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Direct search for single objective

A direct-search method

(2) Poll step
Optionally order the poll set Pk = {xk + αkd, d ∈ Dk} with Dk ⊆ D.

If a poll point xk + αkdk is found such that fΩ(xk + αkdk) < f(xk) then
stop polling, set xk+1 = xk + αkdk, and declare the iteration and the poll
step successful.

Otherwise declare the iteration (and the poll step) unsuccessful and set
xk+1 = xk.
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Direct search for single objective

A direct-search method

(3) Step size update: If the iteration was successful then maintain the
step size parameter (αk+1 = αk) or double it (αk+1 = 2αk) after two
consecutive poll successes along the same direction.

If the iteration was unsuccessful, halve the step size parameter
(αk+1 = αk/2).
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Direct search for single objective

Some comments

We could present the previous algorithm in a different form, namely by

fixing the set Dk (Dk = D, ∀k) not to change with the iteration
number (problem with only bound constraints).
allowing the set Dk to be computed in a way to conform with possible
linear constraints.
to use a forcing function ρ(·) (e.g., ρ(t) = t2) instead of a integer
lattice (the mesh Mk). A forcing function ρ(·) is continuous, positive,
and satisfies limt−→0+ ρ(t)/t = 0 and ρ(t1) ≤ ρ(t2) if t1 < t2.

A point x is accepted (successful) in the search step if

fΩ(x) < f(xk)− ρ(αk).
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Direct search for multiobjective
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Direct search for multiobjective

Derivative-free multiobjective optimization

MOO problem

min
x∈Ω

F (x) ≡ (f1(x), f2(x), . . . , fm(x))>

where
Ω = {x ∈ Rn : ` ≤ x ≤ u}

fj : Rn → R ∪ {+∞}, j = 1, . . . ,m,
` ∈ (R ∪ {−∞})n and u ∈ (R ∪ {+∞})n

Several objectives, often conflicting.
Functions with unknown derivatives.
Expensive function evaluations, possibly subject to noise.
Impractical to compute approximations to derivatives.
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Direct search for multiobjective

DMS algorithmic main lines

Does not aggregate any of the objective functions.

Generalizes ALL direct-search methods of directional type to MOO.

Makes use of search/poll paradigm.

Implements an optional search step (only to disseminate the search).

Tries to capture the whole Pareto front from the polling procedure.
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Direct search for multiobjective

DMS algorithmic main lines

Keeps a list of feasible nondominated points.

Poll centers are chosen from the list.

Successful iterations correspond to list changes.
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Direct search for multiobjective

DMS example
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Direct search for multiobjective

DMS search & poll steps

Evaluate a finite set of feasible points ↪→ Ladd.

Remove dominated points from Lk ∪ Ladd ↪→ Lfiltered.

Select list of feasible nondominated points ↪→ Ltrial.

Compare Ltrial to Lk (success if Ltrial 6= Lk, unsuccess otherwise).
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Direct search for multiobjective

Direct MultiSearch for MOO

(0) Initialization Choose x0 ∈ Ω with F (x0) < +∞, α0 > 0. Set
L0 = {(x0;α0)}.

Let D be a (possibly infinite) set of positive spanning sets.

For k = 0, 1, 2, . . .

(1) Selection of iterate point

Order Lk and select (xk;αk) ∈ Lk.
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Direct search for multiobjective

Direct MultiSearch for MOO

(2) Search step (Optional)

Evaluate a finite set of points Ladd = {(zs;αk)}s∈S (in the mesh or using a
forcing function).

(Lk;Ladd) ↪→ Lfiltered ↪→ Ltrial

If success is achieved then set Lk+1 = Ltrial, declare the iteration and the
search step successful, and skip the poll step.
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Direct search for multiobjective

Direct MultiSearch for MOO

(3) Poll step Evaluate Ladd = {(xk + αkd;αk), d ∈ Dk}, with Dk ⊆ D
(Lk;Ladd) ↪→ Lfiltered ↪→ Ltrial

If success is achieved then set Lk+1 = Ltrial, declare the iteration and the
poll step successful

Otherwise declare the iteration (and the poll step) unsuccessful and set
Lk+1 = Ltrial
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Direct search for multiobjective

Direct MultiSearch for MOO

(4) Step size update: If the iteration was successful then maintain the
step size parameter (αk+1 = αk) or double it (αk+1 = 2αk) after two
consecutive poll successes along the same direction.

If the iteration was unsuccessful, halve the step size parameter
(αk+1 = αk/2).

A.I.F. Vaz (UMinho) DMS October 21, 2010 32 / 64



Direct search for multiobjective

Direct MultiSearch for MOO

(4) Step size update: If the iteration was successful then maintain the
step size parameter (αk+1 = αk) or double it (αk+1 = 2αk) after two
consecutive poll successes along the same direction.

If the iteration was unsuccessful, halve the step size parameter
(αk+1 = αk/2).

A.I.F. Vaz (UMinho) DMS October 21, 2010 32 / 64



Direct search for multiobjective

Numerical Example — Problem SP1 [Huband et al.]

� Evaluated points since beginning.
� Current iterate list.
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Direct search for multiobjective

Refining subsequences and directions

For both globalization strategies (using the mesh or the forcing function in
the search step), one also has:

Theorem (existence of refining subsequences)

There is at least a convergent subsequence of iterates {xk}k∈K

corresponding to unsuccessful poll steps, such that αk −→ 0 in K.

Definition
Let x∗ be the limit point of a convergent refining subsequence.

Refining directions for x∗ are limit points of {dk/‖dk‖}k∈K where dk ∈ Dk

and xk + αkdk ∈ Ω.
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Direct search for multiobjective

Pareto-Clarke critical point

Let us focus (again for simplicity) on the unconstrained case, Ω = Rn.

Definition
x∗ is a Pareto-Clarke critical point of F (Lipschitz continuous near x∗) if

∀d ∈ Rn,∃j = j(d), f◦j (x∗; d) ≥ 0.
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Direct search for multiobjective

Analysis of DMS

Assumption

{xk}k∈K refining subsequence converging to x∗.
F Lipschitz continuous near x∗.

Theorem
If v is a refining direction for x∗ then

∃j = j(d) : f◦j (x∗; d) ≥ 0.
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Direct search for multiobjective

Analysis of DMS

Theorem
If the set of refining directions for x∗ is dense in Rn, then x∗ is a
Pareto-Clarke critical point.

Notes
When m = 1, we obtain the result presented before.
This convergence analysis is valid for multiobjective problems with
general nonlinear constraints.
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Numerical results
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Numerical results

Numerical testing framework

Problems
100 bound constrained MOO problems (AMPL models available
at http://www.mat.uc.pt/dms).
Number of variables between 1 and 30.
Number of objectives between 2 and 4.

Solvers
DMS tested against 8 different MOO solvers (complete results
available at http://www.mat.uc.pt/dms).
Results reported only for
AMOSA – simulated annealing code.
BIMADS – based on Mesh Adaptive Direct Search.
NSGA-II (C version) – genetic algorithm code.

All solvers tested with default values.
A.I.F. Vaz (UMinho) DMS October 21, 2010 49 / 64

http://www.mat.uc.pt/dms
http://www.mat.uc.pt/dms


Numerical results

Numerical testing framework

Problems
100 bound constrained MOO problems (AMPL models available
at http://www.mat.uc.pt/dms).
Number of variables between 1 and 30.
Number of objectives between 2 and 4.

Solvers
DMS tested against 8 different MOO solvers (complete results
available at http://www.mat.uc.pt/dms).
Results reported only for
AMOSA – simulated annealing code.
BIMADS – based on Mesh Adaptive Direct Search.
NSGA-II (C version) – genetic algorithm code.

All solvers tested with default values.
A.I.F. Vaz (UMinho) DMS October 21, 2010 49 / 64

http://www.mat.uc.pt/dms
http://www.mat.uc.pt/dms


Numerical results

Numerical testing framework

Problems
100 bound constrained MOO problems (AMPL models available
at http://www.mat.uc.pt/dms).
Number of variables between 1 and 30.
Number of objectives between 2 and 4.

Solvers
DMS tested against 8 different MOO solvers (complete results
available at http://www.mat.uc.pt/dms).
Results reported only for
AMOSA – simulated annealing code.
BIMADS – based on Mesh Adaptive Direct Search.
NSGA-II (C version) – genetic algorithm code.

All solvers tested with default values.
A.I.F. Vaz (UMinho) DMS October 21, 2010 49 / 64

http://www.mat.uc.pt/dms
http://www.mat.uc.pt/dms


Numerical results

Numerical testing framework

Problems
100 bound constrained MOO problems (AMPL models available
at http://www.mat.uc.pt/dms).
Number of variables between 1 and 30.
Number of objectives between 2 and 4.

Solvers
DMS tested against 8 different MOO solvers (complete results
available at http://www.mat.uc.pt/dms).
Results reported only for
AMOSA – simulated annealing code.
BIMADS – based on Mesh Adaptive Direct Search.
NSGA-II (C version) – genetic algorithm code.

All solvers tested with default values.
A.I.F. Vaz (UMinho) DMS October 21, 2010 49 / 64

http://www.mat.uc.pt/dms
http://www.mat.uc.pt/dms


Numerical results

Numerical testing framework

Problems
100 bound constrained MOO problems (AMPL models available
at http://www.mat.uc.pt/dms).
Number of variables between 1 and 30.
Number of objectives between 2 and 4.

Solvers
DMS tested against 8 different MOO solvers (complete results
available at http://www.mat.uc.pt/dms).
Results reported only for
AMOSA – simulated annealing code.
BIMADS – based on Mesh Adaptive Direct Search.
NSGA-II (C version) – genetic algorithm code.

All solvers tested with default values.
A.I.F. Vaz (UMinho) DMS October 21, 2010 49 / 64

http://www.mat.uc.pt/dms
http://www.mat.uc.pt/dms


Numerical results

DMS numerical options

No search step.

List initialization: sample along the line `–u.

List selection: all current nondominated points.

List ordering: new points added at the end of the list, poll center
moved to the end of the list.

Positive basis: [I − I].

Step size parameter: α0 = 1, halved at unsuccessful iterations.

Stopping criteria: minimum step size of 10−3 or a maximum of 20000
function evaluations.
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Numerical results

Performance metrics — Purity

Fp,s (approximated Pareto front computed by solver s for problem p).

Fp (approximated Pareto front computed for problem p, using results for all
solvers).

Purity value for solver s on problem p:

|Fp,s ∩ Fp|
|Fp,s|

.

A.I.F. Vaz (UMinho) DMS October 21, 2010 51 / 64



Numerical results

Performance profiles [Dolan and Moré]

Let tp,s be a metric for which lower values indicate better performance.

Consider
ρs(τ) =

|{p ∈ P : rp,s ≤ τ}|
|P|

with rp,s = tp,s/min{tp,s : s ∈ S}, where S is the set of solvers and P is
the set of problems.

Incorporates results for all problems and all solvers.
Allows to access ‘efficiency’ and robustness.
ρs(1) represents ‘efficiency’ of solver s.
ρs(τ), with τ large, gives robustness of solver s.
The lower the value tp,s the better.
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Numerical results

Comparing DMS to other solvers (Purity)
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Numerical results

Performance metrics — Spread

Gamma Metric
(largest gap in the Pareto
front)

Γp,s = maxi∈{0,...,N}{di}

Delta Metric
(uniformity of gaps in the
Pareto front)

∆p,s = d0+dN +
∑N−1

i=1 |di−d̄|
d0+dN +(N−1)d̄

where d̄ is the di average f
1

f 2

d
N

Computed extreme points

d
0

d
1

d
2

d
N−2 d

N−1

Obtained points
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Numerical results

Comparing DMS to other solvers (Spread)
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Numerical results

Comparing DMS to other solvers (Spread)
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Numerical results

Data profiles [Moré and Wild]

Indicate how likely is an algorithm to ‘solve’ a problem, given some
computational budget.

Let hp,s be the number of function evaluations required for solver s to solve
problem p.

Consider
ds(σ) =

|{p ∈ P : hp,s ≤ σ}|
|P|

.

Problem solved to ε–accuracy:

|Fp,s ∩ Fp|
|Fp|/|S|

≥ 1− ε.
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Numerical results

Comparing DMS to other solvers
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Numerical results

Comparing DMS to other solvers
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Conclusions and references

Conclusions and references

Development and analysis of a novel approach (Direct MultiSearch)
for MOO, generalizing ALL direct-search methods.

Direct MultiSearch (DMS) exhibits highly competitive numerical
results for MOO.

DMS (Matlab implementation) and problems (coded in AMPL) freely
available at: http://www.mat.uc.pt/dms.

A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente, Direct
multisearch for multiobjective optimization, preprint 10-18, Dept. of
Mathematics, Univ. Coimbra, 2010.
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