Optimal trajectory approximation by cubic splines on fed-batch control problems

A. Ismael F. Vaz1 Eugénio C. Ferreira2 Alzira M.T. Mota3

1Production and Systems Department
Minho University
aivaz@dps.uminho.pt

2IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering
Minho University
ecferreira@deb.uminho.pt

3Mathematics Department
Porto Engineering Institute
atm@isep.ipp.pt

WSEAS - ICOSSE06 - 16-18 November 2006
Outline

1. Motivation for optimal control
2. Optimal control
3. Used approaches
4. Some numerical results
Outline

1. Motivation for optimal control
2. Optimal control
3. Used approaches
4. Some numerical results
Outline

1. Motivation for optimal control
2. Optimal control
3. Used approaches
4. Some numerical results
Outline

1. Motivation for optimal control
2. Optimal control
3. Used approaches
4. Some numerical results
Motivation for optimal control

Outline

1. Motivation for optimal control
2. Optimal control
3. Used approaches
4. Some numerical results
A great number of valuable products are produced using fermentation processes and thus optimizing such processes is of great economic importance.

Fermentation modeling process involves, in general, highly nonlinear and complex differential equations.

Often optimizing these processes results in control optimization problems for which an analytical solution is not possible.
Motivation

- A great number of valuable products are produced using fermentation processes and thus optimizing such processes is of great economic importance.
- Fermentation modeling process involves, in general, highly nonlinear and complex differential equations.
- Often optimizing these processes results in control optimization problems for which an analytical solution is not possible.
Motivation

- A great number of valuable products are produced using fermentation processes and thus optimizing such processes is of great economic importance.
- Fermentation modeling process involves, in general, highly nonlinear and complex differential equations.
- Often optimizing these processes results in control optimization problems for which an analytical solution is not possible.
Outline

1. Motivation for optimal control
2. Optimal control
3. Used approaches
4. Some numerical results
The optimal control problem is described by a set of differential equations \(\dot{x} = h(x, u, t) \), \(x(t^0) = x^0 \), \(t^0 \leq t \leq t^f \), where \(x \) represent the state variables and \(u \) the control variables.

The performance index \(J \) can be generally stated as

\[
J(t^f) = \varphi(x(t^f), t^f) + \int_{t^0}^{t^f} \phi(x, u, t) dt,
\]

where \(\varphi \) is the performance index of the state variables at final time \(t^f \) and \(\phi \) is the integrated performance index during the operation.

Additional constraints that often reflect some physical limitation of the system can be imposed.
The control problem

- The optimal control problem is described by a set of differential equations \(\dot{x} = h(x, u, t) \), \(x(t^0) = x^0 \), \(t^0 \leq t \leq t^f \), where \(x \) represent the state variables and \(u \) the control variables.

- The performance index \(J \) can be generally stated as

\[
J(t^f) = \varphi(x(t^f), t^f) + \int_{t^0}^{t^f} \phi(x, u, t) \, dt,
\]

where \(\varphi \) is the performance index of the state variables at final time \(t^f \) and \(\phi \) is the integrated performance index during the operation.

- Additional constraints that often reflect some physical limitation of the system can be imposed.
The optimal control problem is described by a set of differential equations \(\dot{x} = h(x, u, t) \), \(x(t^0) = x^0 \), \(t^0 \leq t \leq t^f \), where \(x \) represent the state variables and \(u \) the control variables.

The performance index \(J \) can be generally stated as

\[
J(t^f) = \varphi(x(t^f), t^f) + \int_{t^0}^{t^f} \phi(x, u, t) dt,
\]

where \(\varphi \) is the performance index of the state variables at final time \(t^f \) and \(\phi \) is the integrated performance index during the operation.

Additional constraints that often reflect some physical limitation of the system can be imposed.
The control problem

The general maximization problem \((P)\) can be posed as

\[
\begin{align*}
\text{max} & \quad J(t^f) \\
\text{s.t.} & \quad \dot{x} = h(x, u, t) \\
& \quad x \leq x(t) \leq \bar{x}, \quad (3) \\
& \quad u \leq u(t) \leq \bar{u}, \quad (4) \\
& \quad \forall t \in [t^0, t^f] \quad (5)
\end{align*}
\]

Where the state constraints \((3)\) and control constraints \((4)\) are to be understood as componentwise inequalities.
The control problem

The general maximization problem \((P)\) can be posed as

\[
\begin{align*}
\text{max} & \quad J(t_f) \\
\text{s.t.} & \quad \dot{x} = h(x, u, t) \\
& \quad x \leq x(t) \leq \bar{x}, \\
& \quad u \leq u(t) \leq \bar{u}, \\
& \quad \forall t \in [t^0, t^f]
\end{align*}
\]

(1)

(2)

(3)

(4)

(5)

Where the state constraints (3) and control constraints (4) are to be understood as componentwise inequalities.

How we addressed problem \((P)\)?
Outline

1. Motivation for optimal control
2. Optimal control
3. Used approaches
4. Some numerical results
Used approaches

Approaches - Fed trajectory $u(t)$ approximated by a Linear spline $w(t)$.

- Penalty function for state constraints
- Find potential active constraints is easy to solve

Objective function

$$\hat{J}(t^f) = \begin{cases}
J(t^f) & \text{if } \underline{x} \leq x(t) \leq \overline{x}, \\
\forall t \in [t^0, t^f] & \\
-\infty & \text{otherwise}
\end{cases}$$

State constraints

$$u \leq w(t^i) \leq \bar{u}, \quad i = 1, \ldots, n$$

Where t^i are the spline knots.

The maximization NLP problem is

$$\max_{w(t^i)} \hat{J}(t^f), \quad s.t. \ u \leq w(t^i) \leq \bar{u}, \quad i = 1, \ldots, n$$
Used approaches

Approaches - Fed trajectory $u(t)$ approximated by a Linear spline $w(t)$.

- Penalty function for state constraints
- Find potential active constraints is easy to solve

Objective function

$$
\hat{J}(t_f) = \begin{cases}
J(t_f) & \text{if } x \leq x(t) \leq \bar{x}, \\
-\infty & \text{otherwise}
\end{cases}
$$

State constraints

$$u \leq w(t^i) \leq \bar{u}, \quad i = 1, \ldots, n$$

Where t^i are the spline knots.

The maximization NLP problem is

$$
\max_{w(t^i)} \hat{J}(t_f), \quad \text{s.t. } u \leq w(t^i) \leq \bar{u}, \quad i = 1, \ldots, n
$$
Approaches - Fed trajectory $u(t)$ approximated by a Linear spline $w(t)$.

- Penalty function for state constraints
- Find potential active constraints is easy to solve

Objective function

\[\hat{J}(t_f) = \begin{cases}
J(t_f) & \text{if } \underline{x} \leq x(t) \leq \bar{x}, \\
\forall t \in [t^0, t_f] \\
-\infty & \text{otherwise}
\end{cases} \]

State constraints

\[u \leq w(t^i) \leq \bar{u}, \quad i = 1, \ldots, n \]

Where t^i are the spline knots.

The maximization NLP problem is

\[\max_{w(t^i)} \hat{J}(t_f), \quad \text{s.t. } u \leq w(t^i) \leq \bar{u}, \quad i = 1, \ldots, n \]
Approaches - Fed trajectory $u(t)$ approximated by a Cubic spline $s(t)$.

- Penalty function for state constraints
- Find potential active constraints is hard to solve
- No off-the-shelf software to address this problem
- A new penalty function defined for control constraints

Objective function

$$\hat{J}(t^f) = \begin{cases} J(t^f) & \text{if } x \leq x(t) \leq \bar{x}, \\
& \forall t \in [t^0, t^f] \\
-\infty & \text{otherwise} \end{cases}$$

New objective function

$$\bar{J}(t^f) = \begin{cases} \hat{J}(t^f) & \text{if } u \leq w(t) \leq \bar{u}, \\
& \forall t \in [t^0, t^f] \\
-\infty & \text{otherwise} \end{cases}$$
Approaches - Fed trajectory $u(t)$ approximated by a Cubic spline $s(t)$.

- Penalty function for state constraints
- Find potential active constraints is hard to solve
- No off-the-shelf software to address this problem
- A new penalty function defined for control constraints

Objective function

\[
\hat{J}(t^f) = \begin{cases}
J(t^f) & \text{if } x \leq x(t) \leq \bar{x}, \\
\forall t \in [t^0, t^f] \\
-\infty & \text{otherwise}
\end{cases}
\]

New objective function

\[
\bar{J}(t^f) = \begin{cases}
\hat{J}(t^f) & \text{if } u \leq w(t) \leq \bar{u}, \\
\forall t \in [t^0, t^f] \\
-\infty & \text{otherwise}
\end{cases}
\]
Approaches - Fed trajectory $u(t)$ approximated by a Cubic spline $s(t)$.

- Penalty function for state constraints
- Find potential active constraints is hard to solve
- No off-the-shelf software to address this problem
- A new penalty function defined for control constraints

Objective function

\[
\hat{J}(t^f) = \begin{cases}
J(t^f) & \text{if } x \leq x(t) \leq \bar{x}, \\
& \forall t \in [t^0, t^f] \\
-\infty & \text{otherwise}
\end{cases}
\]

New objective function

\[
\bar{J}(t^f) = \begin{cases}
\hat{J}(t^f) & \text{if } u \leq w(t) \leq \bar{u}, \\
& \forall t \in [t^0, t^f] \\
-\infty & \text{otherwise}
\end{cases}
\]
Approaches - Fed trajectory $u(t)$ **approximated by a Cubic spline** $s(t)$.

- Penalty function for state constraints
- Find potential active constraints is hard to solve
- No off-the-shelf software to address this problem
- A new penalty function defined for control constraints

Objective function

\[
\hat{J}(t_f) = \begin{cases}
J(t_f) & \text{if } x(t) \leq x(t) \leq \bar{x}, \\
-\infty & \text{otherwise}
\end{cases} \\
\forall t \in [t^0, t_f]
\]

New objective function

\[
\bar{J}(t_f) = \begin{cases}
\hat{J}(t_f) & \text{if } u(t) \leq w(t) \leq \bar{u}, \\
-\infty & \text{otherwise}
\end{cases} \\
\forall t \in [t^0, t_f]
\]
Implementation details

- The AMPL modeling language:
 - was used to model five optimal control problems
 - dynamic external library facility was used to solve the ordinary differentiable equations

AMPL - A Modeling Programming Language
www.ampl.com

- The ordinary differentiable equations were solved using the CVODE software package.
 http://www.llnl.gov/casc/sundials/

- A stochastic algorithm based on particle swarm was used to solve the non-differentiable optimization problem.
The AMPL modeling language:

- was used to model five optimal control problems
- dynamic external library facility was used to solve the ordinary differentiable equations

AMPL - A Modeling Programming Language
www.ampl.com

The ordinary differentiable equations were solved using the CVODE software package.

http://www.llnl.gov/casc/sundials/

A stochastic algorithm based on particle swarm was used to solve the non-differentiable optimization problem.
The AMPL modeling language:

- was used to model five optimal control problems
- dynamic external library facility was used to solve the ordinary differentiable equations

AMPL - A Modeling Programming Language
www.ampl.com

The ordinary differentiable equations were solved using the CVODE software package.
http://www.llnl.gov/casc/sundials/

A stochastic algorithm based on particle swarm was used to solve the non-differentiable optimization problem.
Implementation details

- The AMPL modeling language:
 - was used to model five optimal control problems
 - dynamic external library facility was used to solve the ordinary differentiable equations

AMPL - A Modeling Programming Language
www.ampl.com

- The ordinary differentiable equations were solved using the CVODE software package.

http://www.llnl.gov/casc/sundials/

- A stochastic algorithm based on particle swarm was used to solve the non-differentiable optimization problem.
Implementation details

The AMPL modeling language:
- was used to model five optimal control problems
- dynamic external library facility was used to solve the ordinary differentiable equations

AMPL - A Modeling Programming Language
www.ampl.com

The ordinary differentiable equations were solved using the CVODE software package.

http://www.llnl.gov/casc/sundials/

A stochastic algorithm based on particle swarm was used to solve the non-differentiable optimization problem.
Outline

1. Motivation for optimal control
2. Optimal control
3. Used approaches
4. Some numerical results
The problems set

- We obtained numerical results for five case studies.

- Problem
 - Penicillin refers to a problem of fed-batch fermentation process
 where the optimal feed trajectory is to be computed while the penicillin
 production is to be maximized.
 - Ethanol refers to a similar optimal control problem where the ethanol
 production is to be maximized.
 - Chemotherapy is the only optimal control problem that does not refer
 to a fed-batch fermentation process. It is a problem of drug
 administration in chemotherapy. The optimal trajectory to be
 computed is the quantity of drug that must be present in order to
 achieve a specified tumor reduction.
 - Lipoprotein optimal control problem is to compute a unique trajectory
 (substrate to be fed) problem. It process includes also a trajectory for
 an inducer. Both problems refer to a maximization for protein
 production.
The problems set

- We obtained numerical results for five case studies.

- **Problem**
 - **penicillin** refers to a problem of fed-batch fermentation process where the optimal feed trajectory is to be computed while the penicillin production is to be maximized.
 - **ethanol** refers to a similar optimal control problem where the ethanol production is to be maximized.
 - **chemotherapy** is the only optimal control problem that does not refers to a fed-batch fermentation process. It is a problem of drug administration in chemotherapy. The optimal trajectory to be computed is the quantity of drug that must be present in order to achieve a specified tumor reduction.
 - **hprotein** optimal control problem is to compute a unique trajectory (substrate to be fed) problem. rprotein includes also a trajectory for an inducer. Both problems refer to a maximization for protein production.
The problems set

We obtained numerical results for five case studies.

- Problem
 - *penicillin* refers to a problem of fed-batch fermentation process where the optimal feed trajectory is to be computed while the penicillin production is to be maximized.
 - *ethanol* refers to a similar optimal control problem where the ethanol production is to be maximized.
 - *chemotherapy* is the only optimal control problem that does not refer to a fed-batch fermentation process. It is a problem of drug administration in chemotherapy. The optimal trajectory to be computed is the quantity of drug that must be present in order to achieve a specified tumor reduction.
 - *hprotein* optimal control problem is to compute a unique trajectory (substrate to be fed) problem. *rprotein* includes also a trajectory for an inducer. Both problems refer to a maximization for protein production.
The problems set

We obtained numerical results for five case studies.

Problem

- **penicillin** refers to a problem of fed-batch fermentation process where the optimal feed trajectory is to be computed while the penicillin production is to be maximized.

- **ethanol** refers to a similar optimal control problem where the ethanol production is to be maximized.

- **chemotherapy** is the only optimal control problem that does not refer to a fed-batch fermentation process. It is a problem of drug administration in chemotherapy. The optimal trajectory to be computed is the quantity of drug that must be present in order to achieve a specified tumor reduction.

- **hprotein** optimal control problem is to compute a unique trajectory (substrate to be fed) problem. **rprotein** includes also a trajectory for an inducer. Both problems refer to a maximization for protein production.
The problems set

- We obtained numerical results for five case studies.
- Problem
 - penicillin refers to a problem of fed-batch fermentation process where the optimal feed trajectory is to be computed while the penicillin production is to be maximized.
 - ethanol refers to a similar optimal control problem where the ethanol production is to be maximized.
 - chemotherapy is the only optimal control problem that does not refer to a fed-batch fermentation process. It is a problem of drug administration in chemotherapy. The optimal trajectory to be computed is the quantity of drug that must be present in order to achieve a specified tumor reduction.
 - hprotein optimal control problem is to compute a unique trajectory (substrate to be fed) problem rprotein includes also a trajectory for an inducer. Both problems refer to a maximization for protein production.
Some numerical results

The problems set

- We obtained numerical results for five case studies.
- Problem
 - **penicillin** refers to a problem of fed-batch fermentation process where the optimal feed trajectory is to be computed while the penicillin production is to be maximized.
 - **ethanol** refers to a similar optimal control problem where the ethanol production is to be maximized.
 - **chemotherapy** is the only optimal control problem that does not refer to a fed-batch fermentation process. It is a problem of drug administration in chemotherapy. The optimal trajectory to be computed is the quantity of drug that must be present in order to achieve a specified tumor reduction.
 - **hprotein** optimal control problem is to compute a unique trajectory (substrate to be fed) problem. **rprotein** includes also a trajectory for an inducer. Both problems refer to a maximization for protein production.
Characteristics and parameters

- The time displacement (h_i) are fixed while the optimal trajectory values are to be approximated.
- Particle swarm is a population based optimization algorithm and a population size of 60 was used with a maximum of 1000 iterations.
- Since a stochastic algorithm was used we performed 10 runs of the solver and the best solution is reported.
Characteristics and parameters

- The time displacement \((h_i)\) are fixed while the optimal trajectory values are to be approximated.

- Particle swarm is a population based optimization algorithm and a population size of 60 was used with a maximum of 1000 iterations.

- Since a stochastic algorithm was used we performed 10 runs of the solver and the best solution is reported.
The time displacement \((h_i) \) are fixed while the optimal trajectory values are to be approximated.

Particle swarm is a population based optimization algorithm and a population size of 60 was used with a maximum of 1000 iterations.

Since a stochastic algorithm was used we performed 10 runs of the solver and the best solution is reported.
Numerical results

<table>
<thead>
<tr>
<th>Problema</th>
<th>NT</th>
<th>n</th>
<th>(t^f)</th>
<th>Cubic (J(t^f))</th>
<th>Linear (\tilde{J}(t^f))</th>
<th>Literature (\bar{J}(t^f))</th>
</tr>
</thead>
<tbody>
<tr>
<td>penicillin</td>
<td>1</td>
<td>5</td>
<td>132.00</td>
<td>87.70</td>
<td>88.29</td>
<td>87.99</td>
</tr>
<tr>
<td>ethanol</td>
<td>1</td>
<td>5</td>
<td>61.20</td>
<td>20550.70</td>
<td>20379.50</td>
<td>20839.00</td>
</tr>
<tr>
<td>chemotherapy</td>
<td>1</td>
<td>4</td>
<td>84.00</td>
<td>15.75</td>
<td>16.83</td>
<td>14.48</td>
</tr>
<tr>
<td>hprotein</td>
<td>1</td>
<td>5</td>
<td>15.00</td>
<td>38.86</td>
<td>32.73</td>
<td>32.40</td>
</tr>
<tr>
<td>rprotein</td>
<td>2</td>
<td>5</td>
<td>10.00</td>
<td>0.13</td>
<td>0.12</td>
<td>0.16</td>
</tr>
</tbody>
</table>

\[J(t^f) = \hat{J}(t^f) = \bar{J}(t^f), \text{ for all feasible points - splines} \]

Similar results between approaches. A new solution for the ethanol case.
Some numerical results

Plots - Linear spline approximation - ethanol case

Control profile

State profile

Vaz, Ferreira and Mota (UMinho - PT)
Some numerical results

Plots - Cubic spline approximation - Similar result

Control profile
- \(u \) - Substrate feed

State profile
- \(X_1 \) - Cell mass
- \(X_2 \) - Substrate
- \(X_3 \) - Product
- \(X_4 \) - Volume

Vaz, Ferreira and Mota (UMinho - PT)
Optimal fed-batch control
16-18 November 2006
17 / 21
Some numerical results

Plots - Cubic spline approximation - Best result

Control profile

State profile

Vaz, Ferreira and Mota (UMinho - PT) Optimal fed-batch control 16-18 November 2006
Some numerical results

Some intermediate conclusions and future work

Conclusions

Viability of the cubic spline approach on fed-batch optimal control.
Shown numerical results with particle swarm
Similar numerical results with the two approaches

Future work

Numerical experiments with the E. coli bacteria
Laboratory confirmation of the obtained results (a lab bioreactor will be available)
Laboratory confirmation of the two approaches and we expect the cubic approach to obtain a lower gap between simulated and real performance.
Some intermediate conclusions and future work

Conclusions

- Viability of the cubic spline approach on fed-batch optimal control.
- Shown numerical results with particle swarm
- Similar numerical results with the two approaches

Future work

- Numerical experiments with the E. coli bacteria
- Laboratory confirmation of the obtained results (a lab bioreactor will be available)
- Laboratory confirmation of the two approaches and we expect the cubic approach to obtain a lower gap between simulated and real performance.
Some intermediate conclusions and future work

Conclusions

- Viability of the cubic spline approach on fed-batch optimal control.
- Shown numerical results with particle swarm
- Similar numerical results with the two approaches

Future work

- Numerical experiments with the E. coli bacteria
- Laboratory confirmation of the obtained results (a lab bioreactor will be available)
- Laboratory confirmation of the two approaches and we expect the cubic approach to obtain a lower gap between simulated and real performance.
Some intermediate conclusions and future work

Conclusions

- Viability of the cubic spline approach on fed-batch optimal control.
- Shown numerical results with particle swarm
- Similar numerical results with the two approaches

Future work

- Numerical experiments with the *E. coli* bacteria
- Laboratory confirmation of the obtained results (a lab bioreactor will be available)
- Laboratory confirmation of the two approaches and we expect the cubic approach to obtain a lower gap between simulated and real performance.
Some intermediate conclusions and future work

Conclusions

- Viability of the cubic spline approach on fed-batch optimal control.
- Shown numerical results with particle swarm
- Similar numerical results with the two approaches

Future work

- Numerical experiments with the *E. coli* bacteria
- Laboratory confirmation of the obtained results (a lab bioreactor will be available)
- Laboratory confirmation of the two approaches and we expect the cubic approach to obtain a lower gap between simulated and real performance.
Some intermediate conclusions and future work

Conclusions
- Viability of the cubic spline approach on fed-batch optimal control.
- Shown numerical results with particle swarm
- Similar numerical results with the two approaches

Future work
- Numerical experiments with the *E. coli* bacteria
- Laboratory confirmation of the obtained results (a lab bioreactor will be available)
- Laboratory confirmation of the two approaches and we expect the cubic approach to obtain a lower gap between simulated and real performance.
Some numerical results

Some intermediate conclusions and future work

Conclusions

- Viability of the cubic spline approach on fed-batch optimal control.
- Shown numerical results with particle swarm
- Similar numerical results with the two approaches

Future work

- Numerical experiments with the *E. coli* bacteria
- Laboratory confirmation of the obtained results (a lab bioreactor will be available)
- Laboratory confirmation of the two approaches and we expect the cubic approach to obtain a lower gap between simulated and real performance.
Some intermediate conclusions and future work

Conclusions

- Viability of the cubic spline approach on fed-batch optimal control.
- Shown numerical results with particle swarm
- Similar numerical results with the two approaches

Future work

- Numerical experiments with the *E. coli* bacteria
- Laboratory confirmation of the obtained results (a lab bioreactor will be available)
- Laboratory confirmation of the two approaches and we expect the cubic approach to obtain a lower gap between simulated and real performance.
ORP3

OPERATIONAL RESEARCH
PERIPATETIC POSTGRADUATE PROGRAMME

Universidade do Minho

September 12-15, 2007
Guimarães – Portugal

www.orp3.com
www.norg.uminho.pt/orp3
The End

Ismael Vaz
email: aivaz@dps.uminho.pt
Web http://www.norg.uminho.pt/aivaz

Eugénio Ferreira
email: ecferreira@deb.uminho.pt
Web http://www.deb.uminho.pt/ecferreira/

Alzira Mota
email: atm@isep.ipp.pt