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Motivation for optimal control

Motivation

A great number of valuable products are produced using fermentation
processes and thus optimizing such processes is of great economic
importance.
Fermentation modeling process involves, in general, highly nonlinear
and complex differential equations.
Often optimizing these processes results in control optimization
problems for which an analytical solution is not possible.
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Optimal control

The control problem

The optimal control problem is described by a set of differential
equations ẋ = h(x, u, t), x(t0) = x0, t0 ≤ t ≤ tf , where x represent
the state variables and u the control variables.
The performance index J can be generally stated as

J(tf ) = ϕ(x(tf ), tf ) +
∫ tf

t0
φ(x, u, t)dt,

where ϕ is the performance index of the state variables at final time tf

and φ is the integrated performance index during the operation.
Additional constraints that often reflet some physical limitation of the
system can be imposed.
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Optimal control

The control problem

The general maximization problem (P ) can be posed as

problem (P )

max J(tf ) (1)
s.t. ẋ = h(x, u, t) (2)

x ≤ x(t) ≤ x, (3)
u ≤ u(t) ≤ u, (4)

∀t ∈ [t0, tf ] (5)

Where the state constraints (3) and control constraints (4) are to be
understood as componentwise inequalities.

How we addressed problem (P)?
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Used approaches

Approaches - Fed trajectory u(t) approximated by a Linear spline w(t).

Penalty function for state constraints
Find potencial active constraints is easy to solve

Objective function

Ĵ(tf ) =


J(tf ) if x ≤ x(t) ≤ x,

∀t ∈ [t0, tf ]
−∞ otherwise

State constraints

u ≤ w(ti) ≤ u, i = 1, . . . , n

Where ti are the spline knots.

The maximization NLP problem is

max
w(ti)

Ĵ(tf ), s.t. u ≤ w(ti) ≤ u, i = 1, . . . , n
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Ĵ(tf ) =


J(tf ) if x ≤ x(t) ≤ x,

∀t ∈ [t0, tf ]
−∞ otherwise

State constraints

u ≤ w(ti) ≤ u, i = 1, . . . , n

Where ti are the spline knots.

The maximization NLP problem is

max
w(ti)
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Used approaches

Implementation details

The AMPL modeling language:
was used to model five optimal control problems
dynamic external library facility was used to solve the ordinary
differentiable equations

AMPL - A Modeling Programming Language
www.ampl.com

The ordinary differentiable equations were solved using the CVODE
software package.

http://www.llnl.gov/casc/sundials/

A stochastic algorithm based on particle swarm was used to solve the
non-differentiable optimization problem.
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Some numerical results

The problems set

We obtained numerical results for five case studies.
Problem

penicillin refers to a problem of fed-batch fermentation process
where the optimal feed trajectory is to be computed while the penicillin
production is to be maximized.
ethanol refers to a similar optimal control problem where the ethanol
production is to be maximized.
chemotherapy is the only optimal control problem that does not refers
to a fed-batch fermentation processe. It is a problem of drug
administration in chemotherapy. The optimal trajectory to be
computed is the quantity of drug that must be present in order to
achieve a specified tumor reduction.
hprotein optimal control problem is to compute a unique trajectory
(substrate to be fed) problem rprotein includes also a trajectory for
an inducer. Both problems refer to a maximization for protein
production.
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Some numerical results

Characteristics and parameters

The time displacement (hi) are fixed while the optimal trajectory
values are to be approximated.
Particle swarm is a population based optimization algorithm and a
population size of 60 was used with a maximum of 1000 iterations.
Since a stochastic algorithm was used we performed 10 runs of the
solver and the best solution is reported.

Vaz, Ferreira and Mota (UMinho - PT) Optimal fed-batch control 16-18 November 2006 14 / 21



Some numerical results

Characteristics and parameters

The time displacement (hi) are fixed while the optimal trajectory
values are to be approximated.
Particle swarm is a population based optimization algorithm and a
population size of 60 was used with a maximum of 1000 iterations.
Since a stochastic algorithm was used we performed 10 runs of the
solver and the best solution is reported.

Vaz, Ferreira and Mota (UMinho - PT) Optimal fed-batch control 16-18 November 2006 14 / 21



Some numerical results

Characteristics and parameters

The time displacement (hi) are fixed while the optimal trajectory
values are to be approximated.
Particle swarm is a population based optimization algorithm and a
population size of 60 was used with a maximum of 1000 iterations.
Since a stochastic algorithm was used we performed 10 runs of the
solver and the best solution is reported.

Vaz, Ferreira and Mota (UMinho - PT) Optimal fed-batch control 16-18 November 2006 14 / 21



Some numerical results

Numerical results

Cubic Linear Literature
Problema NT n tf J(tf ) J(tf ) J(tf )
penicillin 1 5 132.00 87.70 88.29 87.99
ethanol 1 5 61.20 20550.70 20379.50 20839.00
chemotherapy 1 4 84.00 15.75 16.83 14.48
hprotein 1 5 15.00 38.86 32.73 32.40
rprotein 2 5 10.00 0.13 0.12 0.16

J(tf ) = Ĵ(tf ) = J̄(tf ), for all feasible points - splines

Similar results between approaches. A new solution for the ethanol case.
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Some numerical results

Plots - Linear spline approximation - ethanol case
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Some numerical results

Plots - Cubic spline approximation - Similar result
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Some numerical results

Plots - Cubic spline approximation - Best result
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Some numerical results

Some intermediate conclusions and future work

Conclusions

Viability of the cubic spline approach on fed-batch optimal control.
Shown numerical results with particle swarm
Similar numerical results with the two approaches

Future work

Numerical experiments with the E. coli bacteria
Laboratory confirmation of the obtained results (a lab bioreactor will be
available)
Laboratory confirmation of the two approaches and we expect the cubic
approach to obtain a lower gap between simulated and real
performance.
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ORP3
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The End

THE END
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