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Abstract

This report describes an environment for coding semi-infinite pro-
gramming (SIP) problems. This environment is mainly an interface
wrapper for AMPL, which we have coined as SIPAMPL. A large set
of problems has been collected from the literature and has been cod-
ified using AMPL. We trust this development will be of aid to re-
searchers benchmarking SIP algorithms. As a concept demonstration,
we show how a commercial SIP solver (MATLAB) can be interfaced
with STPAMPL. Version 2.0 proposes another approach to interface
MATLAB with SIPAMPL. The Linux and Microsoft Windows ver-
sions, and the database of codified problems are freely available via
the web.
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2 Introduction

In this report, we describe an environment for coding semi-infinite program-
ming (SIP) problems. This environment is mainly an interface wrapper for
AMPL (see http://www.ampl.com), which we have coined as STIPAMPL.
AMPL does not directly support SIP problems. We provide an extension
to enable the codification of SIP problems in AMPL. The resolution of SIP
problems is outside the scope of this report. We start in section 3 by giv-
ing a description of a SIP problem and present a short SIP example coded
in AMPL. A brief description of AMPL is done in section 4. The interface
between AMPL and a SIP solver is described in section 5. In section 6 we
describe the collection of coded SIP problems. An interface to MATLAB
Optimization Toolbox is also available and it is described in section 7. Sec-
tion 8 describes the new approach for using SIPAMPL with MATLAB. Some
discussions and the conclusions are presented in the last two sections. The
Appendix contains a brief description on how to hook a solver to AMPL and
the SIPAMPL directory structure.

3 Semi-Infinite Programming

A SIP problem is a mathematical program of the form:

min f(z)
st. gi(x,t) <0, 1=1,....,m
hi(z) <0,i=1,..,0 (1)
hi(x) =0,i=041,...,q
vt €T,

where f(x) is the objective function, g;(z,t), ¢ = 1,...,m, are the infinite
and h;(z), i =1,...,q, the finite constraint functions. T C RP? is, usually, a
cartesian product of intervals ([ay, 1] X [ag, 2] X ... X [ay, B,]). Since AMPL
does not directly support SIP problems, the following assumptions for coding
SIP problems in AMPL were made.

Assumption 1 Constraint functions which depend on the infinite (t) vari-
ables are coded with names starting with t. Conversely, all constraint func-
tions with names starting with t are assumed to depend on the infinite vari-
ables.

Assumption 2 Allinfinite variable (t) names must start with t. Conversely,
all variables with names starting with t are assumed to be infinite.
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Assumption 3 The AMPL .row and .col files must be provided (option auz-
files rec in AMPL).

As an example consider the following problem

min 27 + 73
zER?

s.t. z1t + 2912 < 0
—10<z1 + 29 <10
vt € [0,1]

The corresponding (SIP) AMPL code is presented below

HHHH R R R R
# Sample problem in the user manual

# aivaz@dps.uminho.pt 27/12/99

FHEH R R

var x {1..2};
# infinite variable name must start with t
var t;

#objective function
minimize fx: x[1]"2+x[2]"2;

# infinite constraint, so name must start with t
subject to tcons:
x[11*xt+x[2]*t~2 <= O0;
# finite constraint therefore name must not start with t
subject to constraint:
-10 <= x[1]+x[2] <= 10;

# bounds on t var
# ampl presolver will use this constraint to provide the bounds array
subject to bounds:

0 <=t <= 1;

#HSHH S S S SRS S S S S S
# End of Problem codification #
#H S HH S S S S S S



# do not forget to write .col and .row files

option mysolver_auxfiles rc;

# this problem has no initial guess (starting point)
option reset_initial_guesses 1;

# change solver

option solver mysolver;

# solve problem

solve;

HERHHAHSHH A HH AR H

# Solution found #
S

printf "Solution found\n";
display x;

display fx;

mysolver is the SIP solver and may be replaced to meet ones requirement.

4 AMPL

AMPL is an algebraic mathematical programming language that allows the
programming of mathematical problems. AMPL provides a way to commu-
nicate with a wide variety of solvers. The flexible and natural language used
by AMPL was the main reason for choosing AMPL for our development. The
extension proposed here could be done in other modeling language environ-
ment, namely in CUTE (Constrained and Unconstrained Testing Environ-
ment [5]), but the Standard Input Format (SIF) language is not as natural as
AMPL’s. AMPL is a commercial software but a student edition is available
for evaluation. STIPAMPL can be obtained by the internet and the reader can
evaluate this software freely. The SIPAMPL directory structure is shown in
the Appendix.

Throughout the paper, we assume that the reader is familiar with AMPL
and the C programming language. For a background reading, see [12, 13| and
[23]. An outline on how to hook a solver to AMPL is given in the Appendix.

5 Interfacing the solver with AMPL

To build the SIP interface for AMPL the following steps should be taken:

e Get AMPL and the solvers.tar file from the internet (see Appendix
for address and for a brief description on how to install). Install AMPL,
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uncompress and build amplsolver.a for Linux or amplsolv.lib for
MS-Windows.

e Get SIPAMPL (see section 6 for internet address). Uncompress SIPAMPL
within solver directory (see Appendix).

e Type make (Linux) or nmake -f makefile.vc (MS-Windows) in SIPAMPL
directory. A new file 1ibsip.a (Linux) or sipampl.lib (MS-Windows)
should be created.

The files 1ibsip.a or sipampl.lib and sip.h (include file within SIPAMPL)
are needed to use SIPAMPL interface. To use SIPAMPL the next steps
should be done:

e Include sip.h in solver code.

e Read stub.nl file in the usual AMPL way (see [13]).

e Call sip_init SIPAMPL function to start using SIPAMPL.
e Call SIPAMPL functions as needed.

e call sip_free to release memory allocated by sip_init.

In sip.h a SIP data structure and some variables are defined. Table 1
shows the variables, their meaning and their correspondence in the SIP defi-
nition in (1). Note that these variables are macros to the SIP data structure.
If one needs another SIP data structure (for example, if one needs two prob-
lems in memory) one should create new macros or use the data structure
directly.

To describe the SIPAMPL functions the following definitions are made.
Since AMPL does not support SIP problems the presolver has no special
care with the variables declaration order, so the variables which names start
with t and the others are mixed up. The nature of SIP requests these
components to be separated (the solver may need to change some variables
while others are kept fixed). Let the original variables array be defined by
xypp = (21, T2, ..., xnvar). We will call 2y, p the original x array of vari-
ables, where nvar is an AMPL variable which gives the total number of
variables in problem. The SIP z and ¢t components must be obtained from
xnrp- Let us call the x an t components xg;p and tg;p respectively.

A brief description of the SIPAMPL functions which support the SIP
evaluation functions follows. Please note that gradients, Hessians and Jaco-
bians are always in dense format, defined in a FORTRAN way (AMPL dense
format).



sip_extractx Extracts the xg;p component from the initial variable

INLP-
sip_extractt As in sip_extractx but for the tg;p component.

sip_joinxt Joins zg;p and tg;p components from SIP back into zyzp
array of variables.

sip_init Initializes the variables for the problem, allocates the ar-
rays for the bounds and copies the bound values to the arrays. This
function looks for variable and constraint names in order to keep track
of the zg;p and tg;p positions in zypp (keeping track of the x and ¢
constraints position is also needed in order to be able to compute the
original constraint position from an z or ¢ constraint position). AMPL
does not provides .col and .row files by default (which are needed to
get variable and constraint names) so the user should provide them
(option mysolver auxfiles rc; - the AMPL command in example
given in section 3).

sip_free Frees the memory allocated during the call to sip_init.
Only the memory is freed, the variables in the sip data structure are
not re-initialized.

sip_objval Evaluates the objective function. The objective function
depends only on the xg;p variables. The user must also provide the
objective function number (AMPL supports multi objective functions).
This function calls AMPL objval with tg;p equal to O.

sip_objgrd Evaluates the objective function gradient vector. As in
sip_objval only the zg;p is needed. sip_objgrd sets the array with
the derivatives with respect to xgrp alone (the others are zero, since
the objective function does not depend on ¢ variables).

sip_objhes Evaluates the objective function Hessian matrix. Again
the objective function depends only on zg;p, so the considerations made
to sip_objval and sip_objgrd are also valid.

sip_conval Evaluates the constraints. Constraints depend on zgrp
and some on tg;p, so both must be provided. sip_conval fills two
arrays, one with the values of constraints that do not depend on ¢ and
the other with the constraints that depend on ¢. sip_conval generates
rnLp from zg;p and tg;p and calls AMPL conval function. It splits
conval result into two arrays.



e sip_jacval Evaluates the constraint Jacobian. Needs zg;p and tg;p.
Fills two matrices (for x and ¢ constraints).

e sip_conxval Evaluates an = constraint. The constraint number must
be supplied. The constraint number refers to x constraints only. Only
Tgrp 1s needed.

e sip_contval Same as sip_conxval but for ¢ constraints. xg;p and
tsrp are needed.

e sip_conxgrd Evaluates an x constraint gradient. Only needs zg;p and
fills an array with the derivatives with respect to xgs;p components.

e sip_contgrd Evaluates a ¢ constraint gradient. Needs xg;p and tg;p.
Fills two arrays as in sip_conval.

e sip_conxhes Evaluates an x constraint Hessian matrix. Only xg7p is
needed. Fills one matrix.

e sip_conthes Evaluates a t constraint Hessian matrix. Needs zg;p and
tsrp. Fills three matrices, derivatives w.r.t. xx, w.r.t. ot and w.r.t. tt.

sip_extractx, sip_extractt and sip_joinxt are mostly used as sup-
port functions to the SIP evaluation functions, that make the interface with
the AMPL, since when calling AMPL functions for nonlinear programming
an ryrp must be supplied.

The asl data structure is also available, so if one needs other information
about the problem the functions from the standard nonlinear interface can
be used. It is the user responsibility to read the stub.nl file and to provide
the corresponding asl data structure.

In Table 2 the function prototypes are shown. The corresponding function
argument descriptions are given in Table 3.



Variable Description SIP
int nxsip xgrp array dimension (number of variables that
do not start by t) n
int ntsip tsrp array dimension (number of variables that
start by t) D
int nxsipc Number of constraints that do not depend on ¢
(constraints that do not start by t) q
int ntsipc Number of constraints that depend on %
(constraints that start by t) m
real *XBU Array of upper bounds on zg;p variables
real *XBL Array of lower bounds on xg7p variables
real *TBU Array of upper bounds on tg;p variables o
real *TBL Array of lower bounds on tg;p variables B;
real *XCBU | Array of upper bounds on zg;p constraints
real *XCBL | Array of lower bounds on xg;p constraints
real *TCBU | Array of upper bounds on tg;p constraints
real *TCBL | Array of lower bounds on tg;p constraints

Table 1: Variables defined in sip.h.




/* Initialize SIP struct and variables */
int sip_init(ASL *a);
/* Extracts x component from original x */
void sip_extractx(real #*x, real *X);
/* Extracts t component from original x */
void sip_extractt(real #*x, real *T);
/* Joins x and t in original x */
void sip_joinxt(real *X, real *T, real *x);
/* Objective function value */
real sip_objval(int nobj, real *X, fint *nerror);
/* Objective function gradient vector */
void sip_objgrd(int nobj, real *X, real *G, fint *nerror);
/* Objective function hessian matrix */
void sip_objhes(int nobj, real *H, fint *nerror);
/* Vector of constraints values */
void sip_conval(real *X, real T, real *RX, real #RT,
fint #*nerror);
/* Constraints Jacobian matrix*/
void sip_jacval(real *X, real *T, real *JX, real *JT,
fint #*nerror);
/* x Constraint value */
real sip_conxval(int ncon, real *X, fint *nerror);
/* t Constraint value */
real sip_contval(int ncon, real *X, real *T, fint #*nerror);
/* x Constraint gradient vector */
void sip_conxgrd(int ncon, real *X, real *G, fint *nerror);
/* t Constraint gradient vector */
void sip_contgrd(int ncon, real *X, real *T, real *GX,
real *GT, fint *nerror);
/* x Constraint hessian matrix */
void sip_conxhes(int ncon, real *H, fint *nerror);
/* t Constraint hessian matrix */
void sip_conthes(int ncon, real *HX, real *HT, real *HXT, fint *nerror);
/* free allocated memory in SIP struct */
void sip_free(void);

Table 2: Function prototypes.
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Argument Description Dimension
in SIPAMPL (in (1))

X Tgrp array from SIP nxsip(n)
T tsrp array from SIP ntsip(p)
X xnrp array from the original nonlinear problem
nobj Objective number (AMPL allows multi objective

functions)
G Objective or constraint gradient vector nxsip(n)
H Objective or constraint hessian matrix nxsipxnxsip(n x n)
RX x constraint values array nxsipc(q)
RT t constraint values array ntsipc(m)
JX 2 constraint jacobian matrix nxsipexnxsip(g X n)
JT t constraint jacobian matrix ntsipeXntsip(m x p)
GX x constraint gradient vector nxsipc(q)
GT t constraint gradient vector ntsipce(m)
HX x constraint hessian matrix nxsip xXnxsip(n x n)
HT t constraint hessian matrix ntsipxntsip(p X p)
HXT x,t constraint hessian matrix nxsipxntsip(n x p)
ncon Constraint number in x or ¢ constraints

(for example if ncon=1 in a call to sip_contval the first

t constraint is evaluated, and possible not the first

declared constraint)
nerror Error variable in AMPL (may be null,

if no error control is wanted)

Table 3: Function arguments.




6 The test problem database

The problems in the database were obtained from several papers and books
on SIP and were coded in SIPAMPL. They comprise linear and non-linear,
academic and real life problems. Several problems have parameters that
can be changed by the user to generate new problems. Most are of small
dimension (less than 50 finite and 10 infinite variables). Table 4 lists the
problems in the database. In the table “Problem” is the problem filename
(with .mod extension), “nx” is the number of z variables (n); “nt” is the
number of ¢ variables (p); “nxc” is the number of finite constraints (¢) and
“ntc” is the number of infinite constraints (m).

Ten problems are those described by Haaren-Retagne in [18] and ten
more optimal signal set design [14] coded as reported in [45]. Sixteen of the
problems correspond to the Watson set (see [47] and [7]). Seven other prob-
lems, quadratic and nonlinear, are described by Price (|35]). One problem
described by Price has an error. In problem S, Price considered 7" to be the
set [0, 1], but the solutions presented are in the set [0,2]”. The later set was
coded. Three C' problems from Price and Coope ([36]) were coded. Twelve
Chebyshev approximation problems have been taken from Hettich [19, 20]
and Reemtsen [37]. Two more Chebyshev problems from [21| were coded.
In the first one Hettich classifies this problem as a quadratic one, but no
quadratic terms in the objective function are seen (problem hettich8). In the
second one the objective function depends on a set of points that are unknown
to us (problem hettich9). Three quadratic problems were taken from Liu, Teo
and Ito [30] and other linear problem from Lin, Fang and Wu (|29], section
5.2). In this paper the solution to the problem is the one reported in [7], but
the problem is not the same (a coefficient in the objective function, the con-
straint and the variables bounds differ from the original one). The problem
was coded as described in [29]. Three linear problems from Fang and Wu [9]
and two from Ferris and Philpott [10] were coded. Seventeen linear problems
were taken from Leon, Sanmatias and Vercher [27]. Problems leon18 and
leon18 correspond to problem 1 and 2 in [32] respectively. Two problems
from production planning were coded as described by Li and Wang [28] and
Wang and Fang [46]. One problem was coded from Tanaka [40] and two more
from Polak [33]. Problem hettich10 was taken from [25]. Example 1 and 2
from [41] were also coded. In fact, example 2 (fe02) appeared in a previous
paper from Gonzaga et al. [15] and is uncorrectly described in [41]. Example
2 appears correctly described in [22, 42]. Three problems from Blankenship
and Falk [4] and seven filter design problems proposed by Potchinkov in [34]
were also included. In problems blankenship2 and blankenship3, obtained
from [4], the set T is of type [0, +00[. The problem used by Powell, to show
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that the generalized Karmarkar [2]| algorithm can converge to a non optimal
solution was also codified, as described in [43]. One problem used by Still [39]
to show the importance of including the boundary points in a discretization
of the infinite set 7" and a problem proposed by Anderson and Lewis in |3|
were also coded. In [16] the author proposes 24 SIP problems. Since 17 were
already in the database, the remaining 7 were coded. Seventeen problems
from [17] and one from [48]| were coded. In [48] the authors present a correct
version of problem hettich10 that was coded as hettich10c. Four problems
from [24] and one from [26] were coded. The two MATLAB examples from
the user manual were also coded.

A total of one hundred and thirty nine problems were coded. Starting
points and solutions, when available from the authors, were also included in
the database. The database, as well as SIPAMPL can be obtained via the
internet'. We trust this development will be of aid to researchers bench-
marking STP algorithms and readers can propose problems to this database
by sending them to the first author (see email address in first page).

Problem nx

nt nrx nrt Problem nx nt nrx nort
andresonl 3 2 0 1 blankenshipl 2 1 0 1
blankenship2 2 4 0 blankenship3 3 2 3 3
coopeL 2 1 0 1 coopeM 2 1 1 1
coopeN 2 1 0 1 elkel 9 1 0 10
elke2 9 1 0 10 elke3 9 1 0 10
elke4 9 1 0 4  elkeb 9 1 0 10
elke6 9 1 0 10 elke7 9 1 0 10
elke8 9 1 0 7 elke9 9 1 0 7
elkel0 9 1 0 7 elkelstd 9 1 0 19
elke2std 9 1 0 19 elke3std 9 1 0 19
elkedstd 9 1 0 7 elkebstd 9 1 0 19
elkebstd 9 1 0 19 elke7std 9 1 0 19
fangl 50 1 0 1 fang2 50 1 0 1
fang3 50 1 0 1 ferrisl 7 1 0 2
ferris2 7T 1 0 1 gockenbachl 33 1 120 16
gockenbach?2 33 1 120 16 gockenbach3 33 1 120 16
gockenbach4 33 1 120 16 gockenbachb 33 1 120 16
gockenbach6 33 1 120 16 gockenbach? 33 1 120 16
gockenbach8 33 1 120 16 gockenbach9 33 1 120 16
gockenbach10 33 1 120 16 goernerl 4 1 0 2
goerner2 5 1 0 2 goerner3 7T 1 0 2
Continues ...

Lhttp:/ /www.eng.uminho.pt/~dps/aivaz/
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. continued

Problem nx nt nrx nrt Problem nx nt nrx nrt
goerner4 7T 2 0 2 goernerd 7T 2 0 2
goerner6 16 2 0 2 goerner7 8§ 2 0 2
gugatl 9 1 0 4 gugat2 9 1 0 4
gugat3 7T 1 2 2 gugatda 9 1 0 4
gugat4b 9 1 0 4 gugatdc 9 1 0 4
gugatdd 9 1 0 4 gugatde 9 1 0 4
gugataf 9 1 0 4 gugatba 7 1 0 4
gugatbb 7T 1 0 4 gugatdc 7 1 0 4
gugatbd 7T 1 0 4 gugatbe 7 1 0 4
gugatbf 7T 1 0 4 gugatb 6 1 0 4
gugat? 4 1 0 4 hettichl 9 2 0 2
hettich2 3 1 0 2 hettich3 5 1 0 2
hettich4 2 1 0 2 hettichb 3 2 0 2
hettich6 7T 2 0 2 hettich? 7T 2 0 2
hettich8 5 1 0 2 hettich9 1 2 0 2
hettich10 2 1 0 2 hettich10c 2 1 0 2
kortanek1 2 1 0 1 kortanek?2 2 2 0 1
kortanek3 7T 1 0 1 kortanek4 8§ 1 0 1
leonl 4 1 0 2 leon2 6 1 0 2
leon3 6 1 0 2 leond 7 1 0 2
leon) § 1 0 2 leon6 5 1 0 2
leon7 5 1 0 2 leon8 7 1 0 2
leon9 7T 1 0 2 leonl0 3 1 0 2
leonll 3 1 0 2 leonl2 2 1 0 1
leon13 2 1 0 1 leonl4d 2 1 0 1
leon15 2 1 0 1 leonl6 3 1 0 1
leon17 3 1 0 1 leonl8 2 1 0 1
leon19 5 1 0 1 11 10 1 0 1
1i2 6 1 0 1 linl 6 2 0 1
liul 2 1 0 1 liu2 2 1 0 1
liu3 16 1 0 2  matlabl 3 1 0 2
matlab2 3 2 0 1 polakl 4 2 0 2
polak2 4 2 0 2 potchinkovl 298 2 0 4
potchinkov2 65 3 0 6 potchinkov3 66 2 0 4
potchinkov4a 67 1 19 2 potchinkov4b 65 1 19 1
potchinkovPL. 122 2 0 4 potchinkovPLR 122 2 0 4
powelll 2 1 0 1 priceK 2 1 0 1
priceS3 4 3 0 1 priceS4 4 4 0 1
priceS5 4 5 0 1 priceS6 4 6 0 1
priceT 4 3 0 1 priceU 4 6 0 1
reemtsenl 11 3 0 2 reemtsen2 10 2 0 2
Continues ...

13



. continued

Problem nx nt nrx nrt Problem nx nt nrx nrt
reemtsend 10 2 0 2 reemtsend 37 2 0 2
reemtsend 11 3 0 2 stilll 2 1 0 1
tanakal 2 1 1 1 teol 3 1 0 1
teo2 3 1 0 1 userman 2 1 1 1
watsonl 2 1 0 1  watson2 2 1 0 1
watson3d 3 1 0 1 watson4a 3 1 0 1
watson4b 6 1 0 1  watsondc 8 1 0 1
watsond 3 1 0 1 watson6 2 1 0 1
watson7 3 2 0 1 watson8 6 2 0 1
watson9 6 2 0 1  watsonl0 3 2 0 1
watsonll 3 2 0 1  watsonl2 3 2 0 1
watsonl3 3 2 0 1 watsonl4 2 1 0 1
zhoul 2 1 0 1

Table 4: Problem in SIPAMPL database

7 Interfacing SIPAMPL with an existing solver

In this section a description of an interface between MATLAB [1] and SIPAMPL
is given. This interface allows problems coded in SIPAMPL to be solved
with MATLAB. MATLAB in its Optimization Toolbox (|6]) provides an Op-
timization Function (fseminf) for semi-infinite programming. The range of
problems that can be solved by MATLAB is limited since the constraints
are limited to two infinite variables in each infinite constraint. The interface
to MATLAB optimization toolbox is limited to two infinite variables, since
problem formulation presented herein supposes that all the infinite variables
appear in all the infinite constraints.
MATLARB sipampl syntax is:

[x0,ntc,xbl,xbu] = sipampl(’userman’)
f = sipampl(x)
[f,Grad] = sipampl(x)
[c,ceq,Kl,...,Kntc,s] = sipampl(x,s)

sipampl(’msg’,x)

The behaviour of sipampl MATLAB function depends on the number of
input and output arguments, so:

14



>>
>>
>>

>>

[x0,ntc,xbl,xbu] = sipampl(’userman’) reads the problem named
stub (stub.nl file) and returns x0 the initial guess, ntc the number of
infinite constraints, and the lower and upper bounds on the z variables
xbl and xbu, respectively.

e f = sipampl(x) returns the objective function value at x.

e [f,Grad] = sipampl(x) returns the objective value and the gradient
vector at x.

e [c,ceq,K1,..., Kntc,s] = sipampl(x,s) evaluates the constraints
at x. s is the step size for the grid where the infinite constraints are
evaluated (see [6] for more details). ¢ and ceq are the vectors with the
values of the finite constraints, ¢ for inequality constraints and ceq for
equality constraints. The K1,....Kntc are ntc vectors (or matrices) with
the infinite constraints evaluated at the grid.

e sipampl(’msg’,x) writes the ampl solution x with the msg text mes-
sage.

A simple example using these functions is:

[x0,ntc,xbl,xbu] = sipampl(’userman’);

options = optimset(’Grad0Obj’, ’on’);

x = fseminf (’sipampl’,x0,ntc,’sipampl’,[1,[1,0],[1,...
xbl,xbu,options);

sipampl(’Solution found by MATLAB’,x);

The interface developed here includes two files. sipampl.c is the main

program which provides the MEX ([31]) function. sipsolve.misa MATLAB
file with a short example of how to use MATLAB to solve problems codified
with SIPAMPL.

These files are also available by the internet with the problem database

and SIPAMPL (see section 6). A step by step installation follows:

e The MATLAB interface is provided with SIPAMPL (see section 6).
e Change to MATLAB directory (inside SIPAMPL directory).

e Typemake (Linux) or nmake -f makefile.vc (MS-Windows). (n)make
calls the mex compiler from MATLAB.

o A MATLAB executable is built.
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Place the MATLAB executable in a directory such that MATLAB is
able to find it (MATLAB path).

Call AMPL with a problem and build stub.nl, stub.row and stub.col
files.

Call MATLAB Optimization toolbox as described previously.

A new approach to SIPAMPL interface with
MATLAB

The new approach consists of exporting all the SIPAMPL interface routines
directly to MATLAB. The new MATLAB functions are:

sip_init initializes the use of the SIPAMPL interface routines;
sip_end cleans memory and writes a solution file for AMPL;
sip_objval returns the objective value;

sip_objgrd returns the objective gradient;

sip_objhes returns the objective Hessian at the last value used in calls
to objective or constraints functions;

sip_conval returns the constraints value;
sip_contval returns an infinite constraint value;
sip_contgrd returns an infinite constraint gradient;

sip_conthes returns an infinite constraint Hessian at the last value
used in calls to objective or constraints functions;

sip_conxeqval returns an equality finite constraint value;
sip_conxeqgrd returns an equality finite constraint gradient;

sip_conxeghes returns an equality finite constraint Hessian at the last
value used in calls to objective or constraints functions;

sip_conxineqval returns an inequality finite constraint value;

sip_conxineqgrd returns an inequality finite constraint gradient;
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e sip_conxineghes returns an inequality finite constraint Hessian at the
last value used in calls to objective or constraints functions;

e sip_jacval returns the Jacobian;

e sip_usage prints the sip_zzz usage. Used by other functions when
reporting an invalid number of arguments.

The number of arguments in each function can be consulted by issuing the
sip_usage function. To get further help about each function the MATLAB
help command can be used.

All functions use the MEX file sipampl2. This MEX file is provided in
source (C programming language) and was tested in Linux and Windows
platforms with MATLAB version 6.1, release 12.1.

The syntax of the new MATLAB functions is

e [x, xbl, xbu, tbl, tbul=sip_init(stub);
where stub is a string with the filename of the .nl file to be solved, x
is the initial guess, xbl is the lower bound array of the finite variables,
xbu is the upper bound array of the finite variables, tbl is the lower
bound array of the infinite variables and tbu is the upper bound array
of the infinite variables.

e sip_end(str,x);
where str is a string with the message written to the AMPL .sol file
and x is the solution found.

e [fl=sip_objval(x);

where x is an array of finite variables and £ is the objective value at x.

e [gl=sip_objgrd(x);
where x is an array of finite variables and g is the objective gradient at
X.

e [h]=sip_objhes();

where h is the objective Hessian at x.

e [c, ceq, inf]=sip_conval(x,t);

where x is an array of finite variables, t is an array of infinite variables,
c is the array of inequality constraints evaluated at x, ceq is the array
of equality constraints evaluated at x and inf is the array of infinite
constraints evaluated at x,t.
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[inf]l=sip_contval(n,x,t);

where n is a constraint number, x is an array of finite variables, t is an
array of infinite variables and inf is the value of the infinite constraint
n evaluated at x,t.

[gx, gtl=sip_contgrd(n,x,t);

where n is a constraint number, x is an array of finite variables, t is an
array of infinite variables, gx is the gradient, w.r.t. z, of the infinite
constraint n computed at x,t and gt is the gradient, w.r.t. ¢, of infinite
constraint n computed at x,t.

[hx, ht, hxt]l=sip_conthes(n);

where n is a constraint number, hx is the Hessian, w.r.t. zx, of the
infinite constraint n computed at x,t, ht is the Hessian, w.r.t. tt, of
the infinite constraint n computed at x,t and hxt is the Hessian, w.r.t.
xt, of the infinite constraint n computed at x,t.
[ceq]l=sip_conxeqval(n,x);

where n is a constraint number, x is an array of finite variables and ceq
is the value of equality finite constraint n evaluated at x.
[geql=sip_conxeqgrd(n,x);

where n is a constraint number, x is an array of finite variables and geq
is the gradient of the equality finite constraint n computed at x.
[heql=sip_conxeqghes(n);

where n is a constraint number, heq is the Hessian of equality finite
constraint n computed at x;

[c]=sip_conxineqval(n,x);

where n is a constraint number, x is an array of finite variables and ¢
is the value of inequality finite constraint n evaluated at x.
[gl=sip_conxineqgrd(n,x);

where n is a constraint number, x is an array of finite variables and g
is the gradient of the inequality finite constraint n computed at x;
[h]=sip_conxineqhes(n);

where n is a constraint number, h is the Hessian of the inequality finite
constraint n computed at x.
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e [jacc, jacceq, jactinf, jacxinf]=sip_jacval(x,t);

x is an array of finite variables, t is an array of infinite variables, jacc is
the Jacobian of the inequality finite constraints (number of inequality
constraints xnumber of finite variables), jacceq is the Jacobian of the
equality finite constraints (number of equality constraintsxnumber of
finite variables), jactinf is the Jacobian w.r.t. ¢ of the infinite con-
straints (number of infinite constraintsxnumber of infinite variables)
and jacxinf is the Jacobian w.r.t. z of infinite constraints (number of
infinite constraints x number of finite variables);

The use of the STIPAMPL MATLARB interface to solve a problem is done
in a similar way as to solve a MATLAB coded problem. We will use the
one-dimensional MATLAB problem

min f(z) = (z; — 0.5)* + (22 — 0.5)* + (z3 — 0.5)*

TER3
1
s.t. sin(tlxl) COS(tliEQ) - —(tl - 50)2 - Sin(tll'g) — T3 — 1 S 0,
10100 (2)
sin(t;xq) cos(tyzy) — M(tl —50)? —sin(t,23) — 23 — 1 <0,

Vi, € [1,100] .

as example. We start by writing a M-File for the objective function. Let
mysipfun.m be such a file with the following content.

function [f,gl=mysipfun(x,s)
if nargin < 1 | nargout<1
error(’Invalid number of arguments’);
end
f=sip_objval(x);
if nargout > 1
g=sip_objgrd(x);

end

We write an M-File for the constraints. Let mysipcon.m be such a file
with the following content.

function [c,ceq,K1,K2,s]=mysipcon(x,s)
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if nargin < 2 | nargout<b
error (’Invalid number of arguments’);
end

if isnan(s(1,1)),
s=[0.2 0; 0.2 0];
end

wi=1:58(1,1):100; w2=1:s5(2,1):100;

lwl=length(wl); lw2=length(w2); Kil=zeros(lwl,1); K2=zeros(lw2,1);

for i=1:1wil
K1(i)=sip_contval(0,x,wl(i));
end

for i=1:1w2
K2(i)=sip_contval(l,x,w2(i));
end

c=[1; ceq=01;

plot(wl,K1,’-’,w2,K2,:?), title(’Semi-infinite constraints’)
drawnow

After writing both file and using AMPL to produce the matlabil.nl,
matlabl.col and matlabl.row we can use MATLAB in the following way
to solve the problem

>> [x0, xbl, xbu, tbl, tbul=sip_init(’matlabl’);
>> [x, fval]=fseminf(’mysipfun’,x0,2, ’mysipcon’)
Optimization terminated successfully:
Search direction less than 2*xoptions.TolX and
maximum constraint violation is less than options.TolCon
Active Constraints:
7
10
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0.6673
0.3013
0.4023

fval =
0.0770

>>

which produces the same solution as in the MATLAB optimization toolbox
manual.

mysipcon will produce a graphic in each call. Figure 1 presents the infinite
constraints in the solution found.

To run all STIPAMPL problems from a dimensional independently way
we have written three M-files. sip_fun.m and sip_con.m are the M-files
that compute the objective function and constraints values, respectively.
sip_solve.m does all the interface to the SIPAMPL routines and calls fseminf
to solve the problem given as the only requested argument. sip_solve does
not return any arguments, but adds a line to the results file in a KTEX syn-
tax and prints the solution found. The use of sip_solve to solve matlabl
and matlab2 problems is shown bellow.

>> sip_solve(’matlabl’)
Optimization terminated successfully:
Search direction less than 2xoptions.TolX and
maximum constraint violation is less than options.TolCon
Active Constraints:
7
10

Solution:
0.6673
0.3013
0.4023

Objective value:
0.0770

21



Semi-infinite constraints

0 T T J

0 10 20 30 40 50 60 70 80 90 100

Figure 1: Plot of the infinite constraints in one-dimensional MATLAB prob-
lem, in the solution found
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>> sip_solve(’matlab2’)
Optimization terminated successfully:
Magnitude of directional derivative in search direction
less than 2*options.TolFun and maximum constraint violation
is less than options.TolCon
Active Constraints:
18

Solution:
0.2926
0.1874
0.2202

Objective value:
0.0091

>>

sip_con.m should be edit to set the initial sampling interval. For problem
matlabl we have used s=[0.2 0 0.2 0] and for matlab2 s=[2 2]. The file
results contains the following two lines.

1
7

077014\\

matlabl & 8
9 009132\\

& 41 & 0.
matlab2 & 9 & 47 & O.

We have changed the select tool from SIPAMPL in order to write a
M-file that solves all the selected problems.

To produce the .nl, .col and .row files the select tool must be used in

expert mode (see Section 9.3).

9 The select tool

In linear /nonlinear semi-infinite programming, as in finite programming, the
algorithms developed are sometimes limited or appropriate to specific prob-
lem structure. For example, to solve a quadratic problems one should use (to
get the best performance) an algorithm suited for quadratic programming.
As SIPAMPL is a generic database, we may want to select some problems
with specific characteristics from all the database problems. The select tool
allows this selection based on the characteristics printed in Table 5. In table:
“Option” is the name of the option which can be changed; “type” is the type
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of data the select tool is waiting for. In list the select tool will present the
allowed values in a list and waits for a selection. In range the select tool
will ask for two values, one for the lower bound and the other for the upper
bound; “allowed values” are the allowed values for the selected option; “de-
fault” are the default values for the option and “SIP” is the terminology in
the problem definition (1). The next subsection will present the installation
instructions. Subsection 9.2 is devoted to the implementation details. Sub-
section 9.3 describes the expert mode. Subsection 9.4 gives a session example
of the select tool.

9.1 Installing the select tool

At this moment the select tool is available for Linux and Microsoft Windows
operating systems and makes some operating systems calls (to read database
directory, invoke AMPL binary, etc) and so portability is compromised (but
porting to other operating system should be easy).

The select tool is provided in only two files: select.h and select.c. A
makefile is also provided and to produce the select binary one just have
to type make in the select directory. The makefile.vc is intended for the
Microsoft Visual C/C++ compiler and the nmake -f makefile.vc should
be used to produce the MS-Windows version. The select tool will behave
differently, depending on the operating system, when writing a script to run
all the selected problems.

9.2 Implementation details

The select tool trusts the information about the objective and constraints
type coded in the problem by the user. The commented lines

# Objective: Quadratic
# Constraints: Linear

in the example shown (Section 3) are very important since they provide
the only information available for the select tool about the objective and
constraints type.

Recall that z1e! < 0 is a linear constraint in SIP, but AMPL will consider
it as nonlinear because of the e’ factor.

select will extract the remaining information from the .mod file in the
database directory. To call the SIPAMPL interface the select tool needs the
.nl, .col and .row files. To produce them select copies the .mod file to a
temporary file and replaces the solve; AMPL command with
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Option

type

allowed values

default

SIP

Objective type

Constraints type

Number finite variables
Number infinite variables
Number finite constraints
Number infinite constraints
Limits finite variables

Limits infinite variables

Initial guess

list

list

range
range
range
range
list

list

list

Linear

Quadratic

Polynomial

Generic

All type

Linear

Quadratic

Polynomial

Generic

All type

Nonnegative integers

Nonnegative integers

Nonnegative integers

Nonnegative integers

Both limits finite

Lower limits finite

Upper limits finite

None limits finite

Everything

Both limits finite

Lower limits finite

Upper limits finite

None limits finite

Everything

With initial guess

Without initial guess

With or without
initial guess

All type

All type

|0,-+oc]
|0,-+o¢]
[0,+00]
[0,+00]
Everything

Everything

With or without
initial guess

3@’@3

Table 5: Questionable problems characteristics
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SIPAMPL

interface

Figure 2: Interconnections between select and SIPAMPL

option auxfiles rc; write gtmpfile;

The amount of time spent for processing a file in the database is due to
the amount of time spent in writing this temporary file and the processing
time used by the AMPL binary to obtain the .nl, .col and .row files.
This drawback is compensated with the unneeded work of the user in the
codification process and it is not subject to mistakes (in counting variables,
etc).

The interconnections for the select tool can be seen in the diagram of
Figure 2.

9.3 Expert mode in the select tool

When the select tool, looks for the requested characteristics, provided by
the user for a given problem, it generates a temporary file and calls the
ampl binary to provide the .nl, .col and .row temporary files. In the
default usage the select tool automatically removes these temporary files.
In expert mode (use select -x) the select tool asks the user to provide
an additional directory (the deposit directory) to place the temporary files
and the select tool then only removes the unmatched files.
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9.4 A session example

To show how a user can select a problem from the STIPAMPL database we
present an interactive session with the select tool.
C:\AMPL\SOLVERS\sip\tools> is the machine prompt. The user starts
by setting the environment AMPLFUNC variable to load the bspline.dl1
dynamic library (needed to the robotics problems in the SIPAMPL database)
and then invoking the select tool in expert mode with the .\select -x com-
mand. The default database directory and AMPL binary are accepted as
being correct. A quadratic objective function with only one infinite variable
is to be selected. No finite simple bounds on the finite variables is requested.
After the select tool having found the problems in the database, that match
the user options, the file select.res is written with the names of the prob-
lems. Under Linux a file named select.run, which is a bash shell script to
run AMPL with all the found problems, can be written. select.run will
have user, group and other execution permissions (mode -rwxr-xr-x). Under
MS-Windows a batch script select.bat replaces the select.run option.
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8¢

C:\AMPL\SOLVERS\sip\tools>set AMPLFUNC=..\nsips\bspline.dll

C:\AMPL\SOLVERS\sip\tools>.\select -x
Select v2.0 tool for SIPAMPL

Expert mode enabled

Default database directory: ..\sipmod
New database directory [CR=Accept default]:
Using database directory: ..\sipmod

Default deposit directory: ..\sipnl
New deposit directory [CR=Accept default]:
Using deposit directory: ..\sipnl

Full path for AMPL binary: ..\ampl.exe
New full path for AMPL binary [CR=Accept default]:

Using ..\ampl.exe when executing AMPL

Specified Options:

1) Objective Type : A1l type

2) Constraints Type : A1l type

3) 0 <= Number of finite variables

4) 0 <= Number of infinite variables
5) 0 <= Number of finite constraints
6) O <= Number of infinite constraints

7) Finite variables: Everything

+Infinity
+Infinity
+Infinity
+Infinity
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8) Infinite variables: Everything

9) Initial guess:

With or without initial guess

Enter option number to change option [CR=End]:1

Processing option 1
New objective type
1) Linear
2) Quadratic
3) Polynomial
4) Generic
5) All type

Option:2

Specified Options:
1) 0Objective Type
2) Constraints Type

3) 0
4) 0
5) 0
6) 0

7) Finite variables
8) Infinite variabl
9) Initial guess:

Quadratic

A1l type
<= Number of finite variables <=
<= Number of infinite variables <=
<= Number of finite constraints <=
<= Number of infinite constraints <=
: Everything

es: Everything
With or without initial guess

Enter option number to change option [CR=End]:4

Processing option 4

New number of infinite variables

+Infinity
+Infinity
+Infinity
+Infinity



0¢

Lower bound [CR=keep value]:
Upper bound [CR=keep value, INF=+Infinity]:1

Specified Options:

1)
2)
3)
4)
5)
6)
7)
8)
9)

Objective Type : Quadratic

Constraints Type : A1l type

0 <= Number of finite variables <= +Infinity
0 <= Number of infinite variables <= 1
0 <= Number of finite constraints <= +Infinity
0 <= Number of infinite constraints <= +Infinity
Finite variables: Everything

Infinite variables: Everything

Initial guess: :  With or without initial guess

Enter option number to change option [CR=End]:7
Processing option 7
Finite variables simple bounds

1)
2)
3)
4)
5)

Both limits finite
Lower limit finite
Upper limit finite
None limit finite
Everything

Option:4

Specified Options:

1)
2)

Objective Type : Quadratic
Constraints Type : A1l type



e

3) 0 <= Number of finite variables <= +Infinity
4) 0 <= Number of infinite variables <= 1
5) 0 <= Number of finite constraints <= +Infinity
6) O <= Number of infinite constraints <= +Infinity
7) Finite variables: None limits finite

8) Infinite variables: Everything

9) 1Initial guess: :  With or without initial guess

Enter option number to change option [CR=End]:

21 file(s) found with specified options

Do you want me to:
1) Save results to file select.res
2) Save results to a batch file select.bat
3) Save results to a M-file sip_run.m
4) Print results to stdout
5) Just quit
Option:1

21 file(s) found with specified options
Do you want me to:

1) Save results to file select.res
2) Save results to a batch file select.bat



(45

3) Save results to a M-file sip_run.m
4) Print results to stdout
5) Just quit

Option:5

C:\AMPL\SOLVERS\sip\tools>



10 Changing the solver name in the database
problems

In each problem file the solver is selected by issuing the AMPL command
option solver nsips;. If a user wishes to write his own solver, then one
of the two following actions must be taken:

e the user solver must be called nsips or renamed nsips.
e the user must edit all the files to change nsips for his own solver name.

To abbreviate the second action we give some bash shell commands to do
this in an automatic form

for i in whatever files you want to change solver
do

sed s/nsips/newsolver/ < $i > $i.new

done

These commands will read the files whatever files you want to change
solver and will write the new files whatever.new files.new you.new want.new
to.new change.new solver.new.

Note that the sed command will replace every word nsips by newsolver.

If the word newsolver exists in the file you may experience some trouble in
changing again the solver name and so the name of any solver should be a
reserved word.

11 Discussion

This is not a suitable tool to assess the execution time of algorithms.

The matrices returned by the SIPAMPL functions are always in dense
format. There are no known problems in SIP which can be considered of
large dimension that would result in large sparse matrices.

A linear constraint in SIP is of the form

vla(t) — b(t) <0, VteT,

where a(t) and b(t) are functions of ¢ alone. Since a(t) and b(¢) may be
nonlinear in ¢ the AMPL will not recognize such a constraint as a linear
constraint for SIP.
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12 Conclusions and future work

SIPAMPL extends the AMPL features by allowing the coding of semi-infinite
programming problems. An interface is also provided so that users can easily
connect their own code to the problems database. SIPAMPL takes advantage
of the AMPL features, including automatic differentiation.

Meanwhile we have developed the NSIPS [44] solver that uses the SIPAMPL
to obtain the SIP test problems.

A AMPL step by step installation

The following steps should be made to connect a solver to AMPL.

e Obtain a copy of the solvers.tar? file.

e Uncompress and build the amplsolver.a (Linux) or amplsolv.lib
(MS-Windows) library. This library provides AMPL functions. The
file asl.h has important data structure definitions, being the asl data
structure the mostly used (it contains the problem data).

e Build a solver and link it with the AMPL library.

AMPL communicates with the solver by a file with .nl extension (stub.nl).
In Figure 3 a diagram of the interaction between AMPL and a solver is shown.
AMPL reads a problem description (from a file or from standard input) and
writes a file with some information about the problem (stub.nl). The solver
reads the stub.nl file into memory. Most of the problem is kept in memory
in an asl data structure. This structure provides most of the problem data
(initial guess, dual initial guess, number of objective functions, expression
for the objectives, number of constraints, constraints expression, etc). After
finding a solution the solver writes a stub.sol file with the solution found.
AMPL reads stub.sol and can then display the contents of the variables in
the problem, on user request.

Some problem data is not available in the stub.nl file (for example the
variable and constraint names are not provided). If extra information is
needed some additional files should be provided.

B SIPAMPL directory structure

The SIPAMPL directories are organized as described in Figure 4. The direc-
tories have the following meaning:

Zhttp://netlib.bell-labs.com /netlib /ampl/

34



/ stub.nl \

AMPL Solver
\ stub.sol /
Figure 3: Interaction between AMPL and the Solver.
solvers
sp
matlab matlab2 s solver nsips sipmod

Figure 4: Organization of SIPAMPL directories

solvers directory refers to the directory where the file solvers.tar
is uncompressed.

The sip directory contains the SIPAMPL interface (where the 1ibsip.a
or sipampl.lib is placed).

The directory matlab contains the MATLAB interface to the STPAMPL
subroutines and an M-file that is a sample on how to use the mex file
routines. matlab2 contains the new interface and the corresponding
M-files.

The nsips directory contains the B-Splines dynamic library to use with
some problems and the NSIPS solver [44].

The s_solver has an example on how to use the SIPAMPL interface
(it calls the SIPAMPL routines and prints the returned values). The
user can place here his own solver.
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e The sipmod directory is where the problems database is located.

The user can change the directory structure as long as the makefiles and
files inclusion are changed accordingly.
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