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Chapter 1

Change Log

1.1 Changes from version 1.0:

Corrected a bug in the Hash table of the discretization method;

e One more multiplier penalty function;

Infeasible interior point quasi-Newton BFGS algorithm;

Solver complains if problem should not be solved by the selected method.

1.2 Changes from version 2.0:

e NSIPS, select tool, sipampl MATLAB function: code changed to compile with the
Microsoft Visual C/C-++ compiler;
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Chapter 2

Introduction

In a previous work we have extended the AMPL [10] environment to allow the codification
of semi-infinite programming problems (SIP) and coined it as SIPAMPL [36]. The interface
to the STPAMPL database is now improved with the NSTPS software providing the database
and the interface with a solver.

The NSIPS includes (at this moment) four solvers: a discretization solver [37, 45, 42];
a penalty technique solver [39, 41], a sequential quadratic programming (SQP) solver [44]
and an infeasible quasi-Newton interior point solver [46].

In Chapter 3 we describe how the NSIPS was made, how to install and how it inter-
connects with the AMPL binary. Chapter 4 is devoted to the discretization method which
is based on two discretization algorithms proposed by Hettich [15, 16] and Reemtsen [29]
and adapted for nonlinear semi-infinite programming [37] and to a discretization method
based on Hettich version with pseudo-random points. Chapter 5 describes the penalty
method which implements several penalty functions and requires numerical computation
of integrals [39, 40, 41]. Chapter 6 describes a sequential quadratic programming (SQP)
method where the quadratic SIP problem (QSIP) is solved by a dual parametrization of the
dual functions [43, 44]. Chapter 7 describes the interior point method. Chapter 8 shows,
in a user point of view, the STIPAMPL interface and database and Chapter 9 presents the
select tool which is distributed with the NSIPS software.

The remaining of this chapter is devoted to a brief introduction to semi-infinite pro-
gramming.

2.1 Disclaimer

This software was developed in the context of the Ph.D. work of the first author advised
by the second and third authors. This work is far from being complete. We disclaim any
responsibility for the use of this software and solutions presented by the solver should be
carefully used. This software is provides in the as is basis and may not suite your purpose
although we welcome any suggestions and improvements.

7



8 CHAPTER 2. INTRODUCTION

2.2 Semi-Infinite Programming

A SIP problem is a mathematical program of the form:

min f(z)
sit. gi(x,t) <0, 1=1,...,m
hi(z) <0,i=1,...,0 (2.1)
hi(z)=0,i=0+1,...,q
vVt eT ,
where f(x) is the objective function, g;(x,t), i =1,...,m, are the infinite and h;(z), i =
1,...,q, the finite constraint functions. 7" C RP is, usually, a cartesian product of intervals

([, Bi] X [ag, Bo] X -+ X [, Bp)).

These problems are called semi-infinite programming problems due to the constraints
gi(z,t) <0, i=1,...,m. T is an infinite index set and therefore (2.1) is a problem with
finitely many variables over an infinite set of constraints.

A natural way to solve the SIP problem (2.1) is to replace the infinite set 7" by a finite
one. There are several ways of doing this. One is by discretization methods, the other
is by exchange methods, and another by reduction methods (see [17], for a more detailed
explanation).

In discretization methods the infinite set T is replaced by a sequence of subsets T C
Ty C -+ C Ty C T (usually the subsets Ty, £ = 0,..., N are grids of points). In each
iteration some points in the subset T}, are chosen and used in the constraints to form a finite
sub-problem. The solution to the SIP problem is approximated by the solution on the final
subset T) and may not be a stationary point for SIP (see, for example [15, 16, 20, 29, 37|).

In exchange methods [13, 30, 49, 53| approximated solutions to the following problems
are computed, for a given ¥ € R"

r?e%’xgi(x,t), i=1,...,m. (2.2)
The finite sub-problem is then solved with the approximated solutions.

In reduction methods [14, 21, 27, 28, 50| all the global and some local maxima for the
problem (2.2) are obtained. The finite sub-problem is then solved with the solutions found
to problem (2.2).

The first method implemented (Discretization method, Chapter 4) belongs to the dis-
cretization class. This solver will solve any problem in the SIPAMPL database that suits
the definition (2.1). The other three methods implemented (Penalty solver, Chapter 5,
SQP solver, Chapter 6 and Interior Point solver, Chapter 7) are restricted to problems in
the SIPAMPL database that have no finite constraints and only one infinite variable. We
include these methods in the discretization class, since the problem (2.2) is not addressed,
although the methods do not use a grid of points.



Chapter 3

Nonlinear Semi-Infinite Programming
Solver

The Nonlinear Semi-Infinite Programming Solver (NSIPS) is a solver for semi-infinite pro-
gramming problems. NSIPS v1.0 [38] implements three different methods: discretization,
penalty functions and sequential quadratic programming. The discretization algorithm
has three versions and the penalty algorithm has two versions, resulting in a total of six
algorithms. Version 2.0 adds the interior point method.

The discretization and SQP methods use the NPSOL [11] to solve the resulting finite
sub-problem. NPSOL is a commercial software and therefore we can not provide it with
the NSIPS. The distributed NSIPS binary version does not include the NPSOL subroutines
and so the discretization and SQP methods can not be used. You can obtain the NPSOL
through the following addresses:

Stanford Business Software

2680 Bayshore Parkway, Suite 304
Mountain View, CA 94043

Phone: +1-415-962-8719

Fax: +1-415-962-1869

or by the Internet address

http://www.sbsi-sol-optimize.com/

If NPSOL is available compile the 1ibopt.a, using the instructions provided with it,
and then use it with the NSIPS.

In the next section, the instructions on how to obtain, use and install the NSIPS
software are described. Section 3.3 shows how to pass options to the NSIPS and Section
3.4 presents the option for selecting the method used to solve a problem. The options
referring to the methods are discussed in the solver specific chapter. The output produced
by the solver is discussed in Section 3.5 and in sections for each specific solver.

9



10 CHAPTER 3. NONLINEAR SIP SOLVER

When no initial guess is known for the problem, an extra initial NLP sub-problem is
solved with five discrete points per dimension and with a random initial guess (random
between 0 and 1 in all dimensions). The solution from this NLP sub-problem is the initial
guess to the SIP problem. For the NSIPS version without the NPSOL software it will not
be possible to start any method with problems that do not have an initial guess.

3.1 Software limitations

Methods are limited to solve only problems of minimization with constraints of type <.
The following table presents the other limitations.



Method Discretization Penalty SQP Interior Point
To what SIP problems
i ?
does it apply" e finite intervals e only infinite e only infinite e only infinite
of ¢ constraints constraints constraints
e finite interval e finite interval e finite interval
of ¢ of ¢ of ¢
e one infinite e one infinite e one infinite
variable variable variable
External needs NPSOL NPSOL  (just for | NPSOL NPSOL  (just for

problems without

initial guess)

problems without

initial guess)

e

SNOILLV.LINIT HHVM.LAOS

1T
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3.2 Using and installing NSIPS

The NSIPS software can be obtained in a binary form (Linux or Microsoft Windows oper-
ating system) and in a source form.

In the binary form it should be copied to a directory where execution is permitted and
preferably where the shell will look for executables (directory in the PATH environment
variable).

If the problem is in a stub form, to solve the problem one must write

% nsips stub

in the shell prompt (% is the Linux shell prompt).
If the problem is in a module file (SIPAMPL database [47]) one should write

% ampl problem.mod

where problem is the problem name under the STIPAMPL database.

The same comments apply to the Windows version.

In the source form the file nsips.tgz should be uncompressed (tar xvzf nsips.tgz)
in the same directory as the SIPAMPL database. Figure 3.1 presents a typical directory
structure for the SIPAMPL database and NSIPS.

AMPL solver directory

sip directory

matlab nsips s_solver sipmod

Figure 3.1: Organization of SIPAMPL and NSIPS directories

The NSIPS source package provides three makefiles. Two makefiles for the Linux
Operating System: makefile.nps which compiles the NSIPS with the NPSOL (links
NSIPS with 1ibopt.a) and makefile.std which produces the version of NSIPS (with-
out NPSOL). To use the makefiles you can either
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e copy makefile.xxx to makefile and just run make, or
e run make -f makefile.xxx

being xxx the appropriate extension for the makefile corresponding to the desired version.
The makefile make_std.vc is for the Windows Operating System with the Microsoft Visual
C/C++ compiler which produces the distributed version of NSIPS. To use the makefile
you can either

e copy make_xxx.vc to makefile and just run nmake, or
e run nmake -f make_xxx.vc

being xxx the appropriate string for the makefile corresponding to the desired version.

The NSIPS uses the SIPAMPL and AMPL interface routines (see Figure 3.2). 1ibsip.a
(sipampl.lib) (SIPAMPL interface routines) and amplsolver.a (amplsolv.1lib) (AMPL
interface routines) are linked with the NSIPS routines.

AMPL
interface

AMPL
SIP database

SIPAMPL

interface

Figure 3.2: NSIPS interconnected with the STIPAMPL interface and AMPL

3.3 Passing options to the solver

The options are passed to the NSIPS in the standard way of passing options to any solver
connected with the AMPL. Options to solvers can be given

e as command line arguments,

e in shell environment variables,
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e in an options file,
e in the modeling file (AMPL option command).

The following examples will be given with respect to the NSIPS.
In the command line argument, if the problem is in a stub form,

% nsips stub [option=value]

where option is the option to set with the value value. The [x| brackets means that x is
optional and may be repeated as many times as desired.
We can set the nsips_options environment variable with the shell (bash) commands

% nsips_options=’[option=value]’
% export nsip_options

In the Windows Operating system the set command to change an environment variable
gives a syntax error if the sign = is used in the variable declaration. Instead the environment
variable OPTIONS_IN can be set. AMPL will read the file pointed by this variable before
processing the model. The MSDOS command

% set OPTIONS_IN=.\nsipsopt.ini

will instruct AMPL to read the file nsipsopt.ini before reading the problem. The file
nsipsopt.ini may have additional options to the solver as if they were inside the model
file.

The option AMPL command can also be used to set the same options

option nsips_options ’[option=valuel’;

directly in the AMPL command prompt or in the STPAMPL problem file, before the solve
command.

3.4 Selecting the method

The default method is the penalty method described in Chapter 5. This solver is the
default since it does not need the NPSOL routines.
The method can be changed be using the option method where the value can be one

of
e disc_hett for the Hettich modified discretization method (Chapter 4);

e disc_halt for the Hettich modified discretization method with the Halton pseudo-
random points (Chapter 4);
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e disc_reem for the Reemtsen modified discretization method (Chapter 4);

penalty for the Penalty method (Chapter 5);

penalty_m for the Penalty method with the Augmented Lagrangian penalty functions
(Chapter 5);

sqp for the Sequential Quadratic Programming method (Chapter 6);
e intp for the Interior Point method (Chapter 7).

If one wishes to use the Hettich modified method, the environment variable could be
used in the following form

%» nsips_options=’method=disc_hett’
’i export nsips_options

for the Linux Operating system, or

% type nsipsopt.ini
option nsips_options ’method=disc_hett’;
i set OPTIONS_IN=.\nsipsopt.ini

for the Windows Operating system and then invoking the solver.

3.5 Solver output

The coded problems in the SIPAMPL database include some display commands to print
the solution found by the solver. One can edit the .mod file to obtain the values for the
objective function, constraints functions and variables. The output from each method
will be described in the corresponding chapter. Each method will append a line to a file
(results) in the working directory.
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Chapter 4

Discretization method

The discretization method is selected with the option
nsips_options=’method=disc_hett’

for the Hettich modified version,
nsips_options=’method=disc_halt’

for the Hettich modified version with Halton pseudo-random points, or
nsips_options=’method=disc_reem’

for the Reemtsen modified version.

Numerical results with the discretization method were presented in [37]. We need to
transcribe some parts of [37| in order to present the options to the solver. Section 4.1
presents some notation and definitions required to the description of the implemented
algorithms implemented (Section 4.2). In Section 4.3 we describe the options to the dis-
cretization method. Section 4.4 shows the solver output.

4.1 Definitions and some Notation

The following definitions are needed to describe the discretization algorithms presented in
the next section.

Definition 1 A grid is a set of the form T[h = (hy, ha, ..., hy)| =T N{t = (t1,t9,...,tp) :
ti=a;+jhi,j=0,....,n51=1,...,p}, where n; = (B; — ;) /h;.

17



18 CHAPTER 4. DISCRETIZATION METHOD

Definition 2 NLP(T[h]) is the following nonlinear programming sub-problem:

min f(z)
sit. gi(x,t) <0,1=1,...,m
hi(z) <0,i=1,...,0 (4.1)
hi(z)=0,i=0+1,...,q
vt €T[h]

The following sets are crucial in the algorithms procedure.

R(xy) denotes the set of all points of the grid at iteration k£ that makes an infinite
constraint active , i.e., R(zy) = {t € T[h*] : g;(zy,t) = 0}.

S(xy) is the set of all points of the grid at iteration k£ that makes an infinite constraint
active or violated, i.e., S(zy) = {t € T[h*] : g;(x1,1) > 0}.

4.2 The Algorithms

Discretization methods try to solve a SIP problem by replacing the infinite set 7" by a finite
one that is, usually, a grid of points. These methods do not guarantee an exact or near
exact solution to the SIP but will solve the SIP in the final grid. These methods start
with an initial approximation to the solution and in order to converge to an approximate
solution the methods solve the problem in a number of intermediate grids. In each iteration
the methods refine the grid in a predefined way. To minimize the number of constraints
in the sub-problem, the algorithms use only a selected set of points in each grid. Hettich
[15, 16] and Reemtsen [29] define two discretization methods, that we have modified to
solve a nonlinear SIP problem.

We have also implemented a Hettich version where the grid is replaced by a set of
pseudo-random numbers. These pseudo-random numbers are known as an Halton (see
[27]) sequence of points. The algorithm will start with a predefined number of pseudo-
random points and, in each refinement, a number of points is added until a maximum
allowed number of points has been reached.

The Hettich modified algorithm is as follows:

Algorithm 3 Hettich modified version
step 0: Define T[h], set T[h] = T[hY]. Solve NLP(T[h°]) and let o be the solution. Define
step k: If S(zp_1) € T[h*]

then: Make T[h*='] = RU S(zy_1). Solve NLP(T[h*~']) and let z;,_1 be the solution.
[f R(fl?kfl) g R
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then: Set R = RU R(x_1).
else: Add one point from T[h*1\R to R.
Continue with Step k.

else: If k > r stop. T[h*] = RU S(z4_1) UN(S(zx_1)). Solve NLP(T[h*]) and let
be the solution. Set R = RU R(xg). Go to Step k+1.

where r is the number of refinements and N(S(z,_1)) contains the neighbors of points of
S(z_1) in the full grid T[h*] that make an infinite constraint active or violated.

The modified Reemtsen algorithm is presented below with some changes in the notation
to meet our requirements.

Algorithm 4 Reemtsen modified version

step 0: Choose £, € (0,1) and 0y > 0 (k =1,...,7). Set Dy = T[h"]. Set also i = 0 and
k=1.

step 1: Solve NLP(D;) and let x; be the solution.

step 2: If k>r stop. Set By = T[h*], eip1 = & and 541 = g
If z; solves the full grid, i.e., g;(x;,t) < 0;41 for allt € Biyy and j=1,...,m

then: Increment k by one and continue with step 2.

else: Set Dy = {t € Biy1 @ gj(wi,t) > —eima|f(xi)],j = 1,...,m}. Increment i by one
and go to step 1.

f(z;) is the objective value in z; (solution of NLP(D;)).
Two grid refinements are made and they are as Hettich proposed in [15], i.e., h' = h?/2,
h*¥+1 = h¥/3. In Reemtsen version of the algorithm ¢, is updated by the formula

gl :gg/(Q)p fork =0
gk—i—l = ’gk/(:)))p for k 7& 0

4.3 Discretization method options

The discretization method options are presented in Table 4.1. The first column (“Option”)
presents the option name. Column “Type” presents the value that the option can take:
“Integer” is an integer value (example: 1, 10, 100); “Double” is a real number in double
precision (example: 1.0, 1, le+1, -1e-1) and “Doubles” is a comma separated list of “Double”
type (example: 0.1,0.2 0.3,0.4 0.1). Column “Default” displays the default value for the
option and in the last column a brief description of the option. Whenever the option has
a correspondence to the notation in the algorithms, it will be given.
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Option Type Default | Description

disc_ dist Double | 0.1 Two points are neighbors if |z —
yl]2 <disc_ dist.

disc_eps Double | 0.01 €.

disc_h Doubles | 0.1 hi,i=1,...,p.

disc_h mx | Integer | 100xp | Number of Halton points added in each
refinement.

disc_ha mx | Integer | 1000xp | Maximum number of Halton points.

disc_inner | Integer | 100 Maximum of NLP(T[h*~]) solved for a
given k.

disc_k Integer | 3 Number of refinements, r.

Zero Double | 1076 Approximation to zero. Used to find ac-
tive point and to compare two points, 0y
for all k.

Table 4.1: Options for discretization method

4.4 Discretization method output

The discretization method will append the line
& ig & fg & avg & nsub & fx \\

to the output file. “ig” is the number of points in the initial grid; “fg” is the number of
points in the final grid; “avg” is the average number of points in the finite sub-problems
solved (number of finite constraints) - the number of constraints in the first finite sub-
problem solved is not counted; “nsub” is the number of finite sub-problems solved; “fx” is
the objective function value in the solution found. The first & is provided to include the
problem name and to build a ETEX tabular environment to produce a table with results.
The solver (if executed by the AMPL) has no information about the problem name and
can not provide the first tabular field. One can use the following bash shell commands

% echo -n "problem" >> ./results
% ampl problem

to produce the following tabular complete line
problem & ig & fg & avg & nsub & fx \\

and after including the begin and end of the tabular, the line looks like this

H problem ‘ ig ‘ fg ‘ avg ‘ nsub ‘ fx H .



Chapter 5

Penalty method

The penalty method includes two versions, both based on a quasi-Newton method applied
to penalty functions. The first method solves the unconstrained problem (based on penalty
functions), where no reference to Lagrange multipliers is made. This method is selected
with the solver option

nsips_options=’method=penalty’.

The second method solves the unconstrained problem using an Augmented Lagrangian
penalty function or a multiplier penalty function. An estimation of the Lagrange multi-
pliers is obtained through an updating formula. This method is selected with the solver
option

nsips_options=’method=penalty_m’.

Section 5.1 presents an overview on penalty functions. In Section 5.2 we present the
finite problem obtained from the semi-infinite problem after applying a constraint tran-
scription. The penalty functions are presented in Section 5.3. The updating formula for
the Lagrange multipliers are shown in Section 5.4. The new constraints are rewritten as
integrals of the infinite constraints. We show how we have numerically computed these
integrals in Section 5.5. Section 5.6 presents the integral computational options. Section
5.7 describes the implemented algorithm, Section 5.8 presents the penalty method options
and Section 5.9 presents the penalty method output.

5.1 Overview on penalty functions
We introduce now some notation that will be used in this chapter.

21



22 CHAPTER 5. PENALTY METHOD

For z € R, let
2z = max{0, z}

and

+1 if 2>0
sgn(z) =<4 0 if 2=0
-1 it 2<0.

Teo and Goh in [32] proposed a constraint transcription from problem (2.1) into a non-
linear finite problem (NLP) where the infinite inequality constraints are transformed into
equality finite constraints of the form:

x)Ec/[gi(z,t)]idt:Q i=1,...,m
T

where ¢ is an empirical weighting factor which is used to improve the numerical accuracy.
However the new constraints of the NLP problem do not satisfy the usual constraint qual-
ification, and therefore the convergence, with typical methods for NLP, is not guaranteed.
In spite of this Teo and Goh reported successful numerical experience with two examples.

Note 5 For an exact penalty function there exists i > 0, such that a local minimizer of
d(x, 1), z*(p), is a solution of (2.1), x*, for u > u. So, a unique minimization of ¢(x, 1)
18 required.

Conn and Gould in [6] proposed an exact penalty function for semi-infinite programming
problems with the following form

(o) 9i(2, t)dt) (1)

1.JQy;
¢oa(T, 1) +MZ< -
ZJ 1JQ;; (2 )dt

where, for any x, there is a finite set of sets {2;;(x) such that

(i) Qi CT,1<j < s =si(x) < oc,

(ii) gi(z,t) >0, Vt € Qi;(x) and g;(z,t) <0, Vt € T\ UjL, (),
(iii) Qij(z) N Qu(z) = {0} if j # k, and

(iv) €;;(x) is connected and non-trivial, i.e., fﬂij(fv) dt > 0.
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The denominator has been included to make the penalty for infeasibility strong enough
in order for the penalty function to be exact (see Note 5). The computation of the sets €;;,
i=1,...,m,j=1,...,s; for the penalty function (5.1) evaluation is a major drawback of
this definition. Instead the following definition can be used

ik ngl:EtL_dt

b, 1) Z g (g, )] (5.2)

which is in some way equivalent to (5.1) [27].

However the penalty function (5.2) is not smooth and a nondifferentiable or derivative
free algorithm must be used. See, for example, Polak [26] for a review on nondifferentiable
optimization and Wolfe [52] for the derivative free Powell method.

In a later paper Jennings and Teo [19] showed how problem (2.1) can be replaced by
an approximate problem (in a similar form as in [32]) with continuously differentiable
constraints in . The approximate problem is then

min f(x)
(5.3)
st. Gie(x) E/ Gie(x,t)dt =0, i=1,....,m
T
with

0, if g;(x,t) < —
gi,e(m?t) = (gz(l', t) + 6)2 /467 if —e€ S gl(l',t) S €, (54)

gi(z,1), if gi(x,t) > ¢,

where € is a small real scalar.

In fact, the equality constraints G;(z) = 0 in problem (5.3) do not, again, satisfy the
usual constraint qualification and it is not advisable to solve the problem in formulation
(5.3). The following approximate problem is then solved

min f(z)
sit. Gie(z) <, (5.5)
1=1,...,m

being 7 a small real scalar. The routine EO4VCF in the NAG library [22] was used, in [19],
to solve problem (5.5). € and 7 are updated during the process and we will herein omit its
description.

Teo et al. in [33] developed a new algorithm based on the L; exact penalty function
technique

i) = @)+ 1Y [ el
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i(z i (z,1)) 2 +€
Other local smoothing technique consists of replacing the [g;(x, )], term by gil@m)+ (291( D) Fe

While the smoothing technique used by Teo is only C' (g;¢(z,t) is not twice continu-
ously differentiable in —e and €) the one presented here is C'* everywhere.

5.2 Problem with constraints transcription

We will use the following problem to approximate (2.1)

min f()

s.t. /[gi(x,t)]erth, i=1,...,m.
T

This problem will satisfy the usual constraint qualification.
The Lagrangian of problem (5.6) is

L(w, ) = fl2) + A (/T [g:(z, )], dt — T> (5.7)
and
VoLla)) = Vaf(a) + Yo [ Vagi(o. ], de 53)

where

Vegi(z,t) if gi(z,t) >0

[Vagi(z, )], = {

5.3 The penalty functions

In this section we describe the implemented penalty functions. We applied primal methods
to the various penalty functions.
In the use of primal methods one tries to solve

min ¢s(z, 1), min Gar (v, A, p) or min guarp(, A, 1) (5.10)

where (2, 1), Gar(x, A, 1) and dparp(x, A, 1) are

e Simple penalty functions

Ohtoa) = 1)+ 1Y [ oty (5.11)
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¢, 1) = fla) + g Z/Tgi,é(x, t)?dt (5.12)

and

3, 1) +,uZ/ (e — 1) dt (5.13)

e A penalty function based on the Augmented Lagrangian with updating formula (mul-
tiplier method) for estimated Lagrange multipliers

Dar(T: A 1) = +ZA (/guxt)dt—7>

" N (5.14)
gz</glextdt>
=1
where A = (\1,..., A7 is the Lagrange multiplier vector.
e An exponential penalty function based on a multiplier method
1 m
¢emp(T, A 1) = f(z) + — Z Ai <€M(IT Giel@ii=r) _ 1) (5.15)
L

5.4 Updating the multipliers

During the optimization procedure the optimal Lagrange multipliers vector is not known
and so an updating formula for the multipliers is needed.
The multiplier updating formula for the augmented Lagrangian (5.14) is

=N [ gt e =1 (5.16)
T

where £ is the iteration counter.
The updating formula for the exponential penalty function (5.15) is

)\erl _ )\fe“(fT Vzgi,g(:vk,t)dt—T)’ 1=1,...,m. (517)
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5.5 Evaluating the penalty function

The integrals in the penalty functions are numerically computed. We use adaptative trape-
zoid or Gaussian formulae.
A trapezoid formula to evaluate a simple integral on T' = [a, b] based on two points is

/ h(z)de ~ 2 h(a) + n(b)].

The evaluation of the integral with a given precision € is done recursively in the following
way. We start by computing the integral using a two point trapezoid formula in the set
[a, b] and in the subsets [a, “T*b] , [“T“’, b] . If the error between the approximations is greater
then ep, i.e.,

a+b

/ab h(z)dz — (/ h(z)dz + /i h(x)dx)

then we proceed recursively in the subsets [a, “T“’} and [“T*b,b]. Otherwise we accept

> €r

atb
[ 7 h(zx)dz + f& h(z)dz as a good approximation to the integral.
2

a

In this way the function evaluations are mostly required where the function is less
smooth.

This adaptative idea can also be used with a Gaussian formula. In spite of the Gaussian
formula having in general a better accuracy, with some careful programming the trapezoid
formula requires less function evaluations, since all function evaluations in the Gaussian
formula are discarded if a subdivision is needed in a given set.

In figure 5.1 the first infinite constraint for hettich2 SIPAMPL [36] problem is used
to illustrate the integral evaluation by a Gaussian adaptative formula. The solid line
represents the function

[= (= (pt +p2e')) = d]

with p; = 0.675751, p, = 0.285805, d = 0.536671 and t € [0,2]. The + signs are the points
where the set [0, 2] was splited with x the corresponding function value. Please note that
in the set [1,2] the function is constant and only three function evaluations are needed.

In the adaptative trapezoid formula the initial interval [a,b] is divided into a pre-
defined number of sub-intervals ni and a recursive formula is applied in each subset
l[a+ix2t a+ (i+1)« 28] withi=0,...,ni— 1.

The number of function evaluations is not limited, but the amplitude of the subset is.
The interval [z, y] will not be splited if y — x < p.
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Figure 5.1: Gaussian adaptative formula in first infinite constraint for hettich2 SIPAMPL
problem
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5.6 Options on integral computation
Option
pf_int=gaussian

selects the Gaussian adaptative formula (each sub-interval estimation is done by a Gaus-
sian formula). Option

pf_int=trapezoid
selects the Trapezoid adaptative formula (each sub-interval estimation is done by a Trape-

zoid formula). Table 5.1 presents other options for tunning the integral computation.
The columns in Table 5.1 have the same meaning as in Table 4.1.

Option Type Default | Description

int _amp | Double | 1072 Minimum integral amplitude p
int_error | Double | 10~% Precision in integral computation er
int_n Integer | 20 Number of initial sub-intervals in adapta-

tive integration ni, or number of Gaussian
points in Gaussian adaptative formula. 6,
8, 16 are the allowed number of Gaussian
points.

Table 5.1: Options for integral computation

5.7 The algorithm

For the primal method

min x min T, A\ or min
mGR"¢S( ;,U/) ) xeR”¢AL( ) ;,U/) :EER"¢EMP

the sequential penalty algorithm used was a quasi-Newton (QN) type algorithm based on
the BFGS updating formula.
A description of the algorithm follows.

Algorithm 6 (Primal method)

Step (a) Given xg, i, € 01, 69 and X (if ¢ is ¢par or ¢pyp). Let i =0, j =0, k =0,
Yo = Zo-

Step (b) Outer iteration. Let xoy = yy.
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Method pf_type | Penalty

penalty pl (5.11)
p2 (5.12)
p3 (5.13)

penalty_m | pl (5.14)
p3 (5.15)

Table 5.2: Relation between the options and the penalty function selected

Step (c¢) Inner iteration. Update H by the BFGS formula (if i = 0 then H = Identity
matriz). Let d; = —HV ;¢.

Step (d) Let «; be the step size computed by an Armijo like rule that sufficiently decreases
the penalty function .

Step (e) Set x;v1 = x; + a;d,.

Step (f) If there is not a significant evolution from x; to x4, (M < 51) then set

[lzit1l

k=k+1, yp =241, i =0, and go to Step (g). FElse seti =1+ 1 and go to Step

(c).

Step (g9) If [ 9ie(yp, t)dt # 0 then update X (if ¢ is ¢par or dpmp), 1 and go to Step

(b). Else, if j > 0 and there is not a significant evolution from ye,s and yy
(”yeps—yk'H
7]
Yeps = Yk, update € and go to Step (b)

< (52) then stop with yi as an approrimatted solution. Else set 7 = j+1,

5.8 Penalty method options

The option
pf_type=[pllp2|p3]

will select the penalty function to be used. Table 5.2 presents the relation between the
options p1, p2 and p3.
The options to the penalty method are presented in Table 5.3.

The columns in Table 5.3 have the same meaning as in Table 4.1.
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Option Type Default | Description

armijo Double | 1071 Constant 7 in Armijo rule

damped | Integer | 1 0 if no damped BFGS updating formula
is used. For any other integer value the
damped formula is used. See |25]

maxiteri | Integer | 400 Maximum allowed number of inner itera-
tions

maxitero | Integer | 400 Maximum allowed number of outer itera-
tions

mu0 Double | 1 Initial approximation to the penalty pa-
rameter [

muf Double | 10 Multiplying factor for the penalty param-
eter

pf preci | Double | 10~* Inner iteration stopping criteria d;

pf _preco | Double | 10~* Outer iteration stopping criteria &y

pf eps Double | 10~* Initial smoothing parameter for differen-
tiability €q

reset Integer | O 0 if no reset of the estimation of the Hes-

sian inverse if requested. Any integer
value for reset.

scale Integer | O 0 if no scaling is wanted. Any value oth-
erwise. If the norm of the direction is not
in range [1072,10%] the direction will be
scaled to fit the values.

Table 5.3: Options for penalty method

5.9 The penalty method output

The penalty method will append the line
& ti & no & npf & ngpf & fx & miu & eps \\

to the output file. “ti” is the number of total inner iterations; “no” is the number of outer
iterations; “npf” is the number of penalty function evaluations; “ngpf” is the number of
penalty gradient evaluations; “fx” is the objective function value in the solution found;
“miu” is the last penalty parameter used and “eps” is the last e used (differentiability
parameter).

The same comment of Section 4.4 about building a IXTEX tabular environment applies.
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Sequential quadratic programming
method

The sequential quadratic method is selected with the option
nsips_options=’method=sqp’.

Section 6.1 introduces the SQP technique. The approximation to the dual functions and
the dual problem are described in Section 6.2. The merit function used to measure progress
toward the solution is described in Section 6.3. Section 6.4 presents the full implemented

algorithm. The options to the SQP methods are shown in Section 6.5 and Section 6.6
shows the SQP method output.

6.1 Sequential quadratic programming technique

The Lagrangian function associated with problem (2.1) can be equated in the following
way

L) = @)+ Y [ gplt)dny() (6.1

where the integrations are Lebesgue-Stieltjes (see for example [51]) integrals with measures
induced by v(t) (vector function v(t) = (vi(t),...,v.(t)T).

The first derivative of the Lagrangian function (5.7) with respect to x can be obtained
by the following formula

V.L(z,v) =V f(x)+ Z/ V.9;(z,t)dv;(t) (6.2)

31
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Given an xy (z at iteration k), a local quadratic approximation to problem (2.1), here
denoted by quadratic semi-infinite programming (QSIP) is:

: _ 1 T T
Inin fold) = g4 Hyd+d V f(z)
s.t. dTVmgj(xk,t) + gj(xk,t) < O,

j=1,...,m, Vt € [a,b] ,

(6.3)

where Hj, is a symmetric positive definite matrix, V f(zy) is the gradient of the objective
function and V,g;(xk,t), j = 1,...,m are the gradients of the infinite constraints, with
respect to the x variable.

The sequential quadratic semi-infinite programming (SQSIP) technique solves a se-
quence of QSIP problems (6.3) for di, the search direction used to compute a new ap-
proximation, zx.1 = Ty + agdy, to the solution of the original problem (2.1), where «y, is
obtained through a line search procedure.

The SQSIP technique is described in the following algorithm.

Algorithm 7 SQSIP algorithm

Step (a) Given xy. Let k = 0.

Step (b) Compute Hy.

Step (c) Solve the QSIP problem to obtain the search direction dy.
Step (d) If dr = 0 then stop.

Step (e) Line search. Find oy such that xp,1 = x) + apdy gives a sufficient decrease in a
merit function.

Step (f) If there is not a sufficient difference from xy,1 and xy then stop with xxy1 as an
approzimated solution. Else let k =k + 1 and go to Step (b).

6.2 Solving the QSIP problem

Some of the theory presented in [23] will be used to show how the QSIP problem is solved.
The Lagrangian function associated with problem (6.3) is

L(d,v) = %dTde +d"V f () + Z/ (d"V09;(wr, t) + gj(xr, 1)) dv;(t) (6.4)

where once again the integrations are Lebesgue-Stieltjes integrals with measures induced
by v(t).
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Let V[a, b; R™] be the space of all normalized bounded variation functions from |[a, 0]
to R™, which are right-continuous on (a, b) and vanish at ¢ = a. Let V* be the set of all
the nondecreasing functions of V [a, b; R™].

Assumption 8 The interior of the feasible set of problem (6.3) is nonempty.
Lemma 9 If Hy, is positive definite then problem (6.3) has a unique solution d*.
The following theorem follows from the Duality Theory.
Theorem 10 (Theorem 3.2 in [23]) Let d* be the unique solution to problem (6.3). Then
fo(d") = max min £(d, v) (6.5)

veEV* dER™

and the mazimum on the right hand side of (6.5) is achieved at some v* € V*. Furthermore,

fo(d") = min L(d, v") . (6.6)

For a given v € V [a, b; R™] the unique solution d(v) to the problem
min L(d,v) (6.7)

is given by

m

d(v) = —H! (v fan) +Y / Vmgj(xk,t)dvj(t)) (6.8)

j=1
which can be easily seen by solving the equation
Vdﬁ(d, ’U) =0.
The right hand side of (6.5) can be written as a dual problem

min L*(v) (6.9)

where £*(v) is the dual functional given by

L*(v) =— L(d(v),v)

:% (Vf(xk) + z;/a V:ngj(xk:t)dvj(t)) lel
(Vf(xk) + Z/ Vmgj(xk:t)dvj(t)>
- / 05 (e 1)y (1)

(6.10)
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As the dual variables v in (6.9) are measures of the integration, to solve problem (6.9)
an approximation to v(¢) by piecewise linear functions in [a, b] as considered. Let F* C V*
be the set of all these functions. Let

a=ty <t < - <ty <tiy1=0
be a partition of the set [a,b]. Let the vector function v(t) € F} C F* be defined by

wy;(t — a), for t € la,ty);
’Uj(t) = Clij+wi+1j(t—ti), for t € [ti,ti+1),i: 1,2,...,0—1; (611)
apj + ’LUH_lj(t — tl), for t € [tl, b] ;

th]+2ij tya), i=1,...,1 (6.12)

being ¢;, © = 1,...,[ the partition points, h;;, 1 = 1,...,[, 7 = 1,..., m the discontinuity
jumps and w;;, i =1,...,1+1, j=1,...,m line segment slopes (see Figure 6.1).

Figure 6.1: Linear segments to approximate v(¢) with [ = 2 and m = 2.

With approximation (6.11) to v(¢) and the properties of Lebesgue-Stieltjes integration,
the integrals in (6.10) can be approximated by the following formulae

I+1
/ V2gi(z, t)dv,(t) vag] x, t;)hij +Zw,] Vmgj(x,t)dt (6.13a)

-1

and

1+1

b
/ gj(x,t)dv;(t) Zgj x, t;)hij +Zwm/ gj(x, t)dt (6.13b)
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and the solution of problem (6.9) by

min £ (v) (6.14)

veF]

with [ suitable large, where £} (v) is given by

ﬁ?(’U) :% <Vf($k) + ZCj) Hl;l <Vf($k) + ch>

j=1 j=1

m ! I+1 ”
Z (Z (zk, L h1]+Zwm/ g;(z, )dt)

j:l =1

(6.15)

with

I+1 t;
= Z V:vg] Tk, 1 hzy + sz]/ :cgj :Ek,t)dt
1

See [23] for details.

Note 11 In the problem (6.14) the constraint v(t) € F; is equivalent to the following
constraints

wy >0 i=1,...0+1, j=1,....m
hy>0 i=1,....0, j=1,....m (6.16)
tigti—l—l ’LZO,,Z

Note 12 This new problem based on (6.15) and (6.16) has m + lm + (I + 1)m variables,

(I + 1)m + Im + 2 simple bound constraints and | — 1 linear constraints and is no longer
quadratic.

6.3 Merit function

We measure progress to the solution of the SIP problem by means of the following merit
function

¢(z, 1) ) + MZ/ gj(x.1)] (6.17)

where p is a positive parameter and [c]; = maz{c, 0}.
We use the following procedure to compute the penalty parameter p; 1 which ensures
that d from (6.8) is a descent direction for (6.17), at xy.
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Algorithm 13 Computation of the penalty parameter

Step (a) Compute —d" Hpd—3 77", fab dT'N ,g;(xr, t)dv;(t). If it is negative then set pigy1 =
g, go to Step (d).

Step (b) Compute

mo b
Z/ [gj(zx, 1)]2 dt. (6.18)
j=1"¢

If (6.18) is zero, as a safequarded procedure take d = —V ¢(xk, pr) and set

Hk+1 = Hk, go to Step (d).

Step (c) Set

(6.19)

—d"Hyd = Y77 ff A"V o g (zk, t)dv,(t) p }
s [k

pg1 = 10 max{ it
S [, Lgs(ans )] dt

Step (d) Proceed.

The step size a4, used is the first member of the sequence {1, 3, 3% ...}, f = 0.5, that
satisfies the Armijo rule

d(wp + ond, pigr1) < S(hs prs1) + nad” Vo (T, g, (6.20)

with n € (0,1), fixed.

6.4 The complete algorithm

We are now in position to present the full implemented algorithm.
Algorithm 14 SQSIP full algorithm

Step (a) Given g, 61 and dy. Let k=0 and |l = 1.
Step (b) Update H, ' by a BFGS formula (if k = 0 then Hy =Identity matriz).

Step (c) Let b=V f(xy).
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Step (d) Solve the following problem

T
. . 1 m » m
g, F1 (P i) = 5 <b+ ZCj) 5 (H E;cj)
]:

Wij, i=1,..., +1 J=1
7=1,....m

m +1
_ Z (Z g (T, ti) hij + Zw”/ 9;(zk, )dt) (6.21)

—1
s.t.
w>0, h>0, t,,1—t>0, 1=0,...,1
with

I+1 t;
= Z V:vg] Tk, 1 hzy + Zwm/ :vg] :Ek,t)dt
1
to obtain the v(t) unknowns.

Step (e) Obtain the search direction d; from

d}(ti, hij, wij) = —lel (b + Z Cj) (622)
7=1
where t, h and w define the solution to problem (6.21) at iteration I.

Step (f) If there is a sufficient difference from d,_, and d, (W > 01) and l < n, then

let 1 =141 and go to Step (d). Else stop with dj, = d; as an appropriate solution
to problem (6.3).

Step (g) if dy = 0 then stop with xy, as the solution.
Step (h) Penalty parameter. Compute py1 using the Algorithm 13.

Step (i) Line search. Find cy, the first element of the sequence {1, 3, 3%,...} that satisfies
the Armijo rule (6.20).Set xp 1 = xp + apdy.

Step (j) If there is not a sufficient difference from xyy1 and xy (M < 09) then stop

lzk+1ll2
with xx1 as an approrimated solution. Else if | = n go to Step (b), else let

| = max{1,l — 1} and go to Step (b).
The initial guess to the problem (6.21) is the following

t—zl+1, 1=1,...,1
hij=1.0, i=1,...,l, j=1,...,m (6.23)
wi; =1.0, 1=1,...,14+1, 5=1,....,m
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Since the solutions of the several solved QSIP subproblems approximate (by linear
segments) the multiplier functions (v;(¢), j = 1,...,m) of problem (2.1) the algorithm
implemented has the ability to use the previous solution (for a given [) as initial guess to
the next QSIP sub-problem.

Problem (6.21) was solved with the NPSOL software package. With a low integral
computation accuracy the use of finite differences to approximate the first derivatives of
L} with respect to the variables ¢, h, and w is not recommended. We have coded the first
derivatives instead.

For the matrix Hj;, we have implemented a BFGS updating scheme to approximate the
Hessian of the Lagrangian function, V2 L (zx, v).

Another issue concerning problem (6.21) is the one dimensional integral computations.
Since the intervals [t; 1, t;] may be small and to reduce the number of integral computations,
the [ + 1 integrals

ti t
W5 Vmgj(xk,t)dt and wij/ gj(xk,t)dt (624)
ti—1 ti—1
are replaced by
b b
/ w0y (6)Vag; (2, )t and / w0 (8)g; (xp, 1)t (6.25)
respectively where
(,Uj(t) = Wy if te [tifl,ti] . (626)

We approximated the integrals (6.25) by a adaptative trapezoid formula as in [40] (see
Section 5.5).

6.5 The SQP method options

In the computation of the integrals the options of Section 5.6 are still valid for tuning the
integral computation. The options to the SQP method are presented in Table 6.1.
The columns in Table 6.1 have the same meaning as in Table 4.1.

6.6 The SQP method output

The SQP method will append the line
& no & nmf & ngmf & nc & nge & fx \\

to the output file. “no” is the number of outer iterations; “nmf” is the number of merit
function evaluations; “ngmf” is the number of merit gradient evaluations; “nc” is the number
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Option Type Default | Description

armijo Double | 1071 Constant 7 in Armijo rule.

damped | Integer | 1 0 if no damped BFGS updating formula
is used. For any other integer value the
damped formula is used. See [|25].

maxiteri | Integer | 400 Maximum allowed number of inner itera-
tions.

maxitero | Integer | 400 Maximum allowed number of outer itera-
tions.

pf preci | Double | 10~* Inner iteration stopping criteria 9.

pf preco | Double | 10~* Outer iteration stopping criteria d,.

reset Integer | O 0 if no reset of the estimation of the Hes-
sian inverse if requested. Any integer
value for reset.

scale Integer | O 0 if no scaling is wanted. Any value oth-
erwise. If the norm of the direction is not
in range [1072,10%] the direction will be
scaled to fit the values.

dual ini | Integer | 1 0 if no reset on the initial guess to the
QSIP is wanted. Any other value oth-
erwise (always use the initial guess in
(6.23)).

Table 6.1: Options for the SQP method

39

of constraint evaluations; “ngc” is the number of constraint gradient evaluations and “fx”
is the objective function value in the solution found.
The same comment of Section 4.4 about building a BTEX tabular environment applies.
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Interior Point method

The interior point method is selected with the option
nsips_options=’method=intp’.

Section 7.1 presents the interior point paradigm. Section 7.2 is devoted to the imple-
mentation details and Section 7.3 presents the full implemented algorithm. Section 7.4

presents the method options and Section 7.5 shows the output results from the method.
Proof of theorems are omitted. The user is referred to [46] for details.

7.1 The interior point method

We will use the following approximate problem to solve (2.1)

min f(z)
(7.1)
s.t. / Gielz,t)dt <T1,1=1,...,m
T
for a positive decreasing sequence of 7 values and
gi(x,t) + \/(91‘(55; t)* + €
Gie(z, 1) = 5 . (7.2)
We now follow the main ideas in [31, 34, 35].
Adding nonnegative slack variables, w;, i = 1,..., m, we reformulate problem (7.1) as
e I 7)
s.t. / iz, t)dt — 7+ w; = 0 (7.3)
T

wiZO,izl,...,m.

41
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being w the vector with w; components.
We eliminate the inequality constraints in (7.3) by placing them in barrier terms in the
objective function, resulting in the barrier problem

rER" ,s€ R™

min _ f(z) — uZlog(si +7)
i=1

s.t. / Gie(x, t)dt + s, =0,
T

1=1,...,m

where s is the vector of the s; = w; — 7 variables and g > 0 is the barrier parameter. The
associated Lagrangian function is

L,(x,s,\) = f(x)— ,uZlog(si +7)— Z by </T Gie(x, t)dt + si) (7.5)

=1

and the first-order KK'T conditions for a minimum are

VLol 5, 0) = Vi) = Y Ai/ Vg ()t = 0 (7.6a)
i=1 T
VL, (z,5,)) = —pSle—=A=0 (7.6h)
VaLu(z,8,A) = —g(z) —s =0 (7.6¢)
where S is a diagonal matrix with elements s; + 7, ¢ = 1,...,m, e is the unit vector, g(x)

is a vector with elements fT gie(x,t)dt, s is the vector of the s; and A is the vector of the
A

We now modify (7.6) by multiplying equation (7.6b) by S, giving the following primal-
dual system

Vi) - YA /T Vg, )t = 0 (7.7a)

—pe — SAe =0 (7.7b)

—g(x) —s=0 (7.7¢)

where A is a diagonal matrix with elements \;.
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Applying Newton’s method to (7.7) we obtain the following system

H(z,A\) 0 —J(x) Ax —Vf(@)+ 370N [ Vagie(z, t)dt
0 -A =S As | = pe + SAe (7.8)
~JM(z) -T 0 AN g9(z) + s
where
H(z,\) Z)\ / 2aic(z, )dt, (7.9)

(/ Vagie(z,1)d /Vmgme . t)dt) (7.10)

and (Az, As, A)) is the Newton direction.
System (7.8) can be rewritten in a shorter form as

H 0 —J Az o
0 —-A =S As | = 1|~ (7.11)
—JI -1 0 AN p

where
o=-Vf+JA\ (7.12a)
v = pe+ SAe (7.12Dh)
p=g-+s. (7.12¢)

The vector o0 measures dual infeasibility and vector p measures primal infeasibility.

Theorem 15 (Similar to Theorem 1 in [35].)
If N =H — JS *AJT is nonsingular, system (7.11) has a unique solution given by

Az =—-N"'Vf—uN"'JS e+ N7 IS 'Ap (7.13a)

As=J'N'Vf+puJ"N'JS e — (I + J'N'IS'A)p (7.13b)

AN=SAp+ S AN o — STIAJEN LTS 1y +
STINJTNTLIS ™ Ap — Sy, (7.13¢)
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Proof. [46, Theorem 3.1| m

Given an initial approximation (2%, 5%, \%), the method proceeds iteratively by comput-
ing the next approximation in the following way

" =2k 4 o ALt
P = b 4 aF ASF (7.14)
AFE= AP oF AN

where k is the iteration counter and o is the step length selected to ensure that the
vectors s + 7e and A remain nonnegative and nonpositive respectively, and to guarantee
convergence.

7.2 Implementation details

7.2.1 The merit function

For nonlinear optimization problems, a merit function or a filter (see |9] or [3] in the interior
point context) should be used to ensure progress toward a local minimizer and feasibility.
This progress is achieved selecting the step length along the search direction so that a
sufficient reduction in the merit function is obtained.

In [8] the author propose a merit function based in the squared ly-norm of the residual,
but this merit function can drive the algorithm to local minima, maxima or saddle points
[31].

We have implemented two merit functions. The [y merit function which for problem
(7.4) has the following form

3w, 5511, 8) = flx) — p Y _log(si+7) + ngp, (7.15)
=1

where p is given by (7.12c) and 8 > 0 is the penalty parameter. The augmented Lagrangian
merit function which for problem (7.4) has the following form

Cate X 5) = 0) = w3 ol +7) = Xpt 2, (7.16)

and once again p is given by (7.12¢) and > 0 is the penalty parameter.

We are able to prove that for sufficiently large /3, the step defined by (7.8) is a descent
direction for the [ and the augmented Lagrangian merit function when the problem is
strictly convex.
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Theorem 16 If N is positive definite, then there exists @im > 0, such that the search
direction (Ax, As) satisfies

V.\' (Ar) _

Vs As) —

for every g > 5:?”-”. The equality holds if and only if (x,s) satisfies (7.7) for some \.

Proof. [46, Theorem 4.1] m

Theorem 17 If N is positive definite, then there exists 5,5”;4" > 0, such that the search
direction (Ax, As, AN) satisfies

v.LA\ " [Az
VsﬁA As SO
VLA AN

for every B > B5A . The equality holds if and only if (x,s) satisfies (7.7) for some .

min *

Proof. [46, Theorem 4.2] m

In spite of the formula for the f,,;, the algorithm proceeds in the following way to
obtain a 3 such that the search direction is descent for the merit function.

Algorithm 18 (5 computation)

Step(a) If k = 0 then let B¥ = 0.

Step(b) If
T V.LaA\ " [Ax
T~A
<$xz> (2:2) <0 or VL4 As | <0
s VLA AN

then go to Step(d), otherwise go to Step(c)
Step(c) If B* = 0 then set B¥ = 0.1 and go to Step(b), else % = 108* and go to Step(b).

Step(d) Proceed with the line search.
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7.2.2 The step length selection

Choosing o = 1 could violate the property that the variables w* = s* + 7e and A\* should
remain nonnegative and nonpositive respectively. In the context of the discussion presented
in Section 7.1, this means that s¥ + a*As¥ must remain greater than —7 and \F + aFANF

must remain negative, for i = 1,...,m. So the inequalities
A+aAXN <0 (7.17)
and
s+ alAs > —te (7.18)

imply that the maximum possible value for « is

—)\Z —T — S5;
in{¢ — 1
mln{A)\i, As } : (7.19)
for every 7 such that A)\; > 0 and As; < 0.
As a safeguard procedure we select

—)\1' —T — §;
= mi 1.0. 1 — 2
Qmar = MiN { ,0.95 min { AN As }} , (7.20)

to avoid dangerous proximity of the s variables from —7e .
A backtracking strategy is then implemented in the interval (0, q,] to compute an
o that gives a reduction in the merit function.

7.2.3 Initial values

Some heuristic could be defined in order to provide initial approximations to the slack and
dual variables. The algorithm uses the initial guess for the primal variables proposed by
the user. If the user does not provide an initial guess the procedure described in [37] which
consists in solving a finite nonlinear problem with the infinite set T" replaced by a grid of
five equally spaced points is implemented.

As 2% may lie very close to the boundary of the feasible region and s would be very
close to —7e, we require a f > 0 so that the initial s is at least as large as 6. So, for the
success of the algorithm we set

s) :max{/gi’e(zo,t)dt,ﬁ}, i=1,...,m (7.21)
T
and the dual variables are set to
A= [JTI ItV (7.22)

Whenever we update the 7 parameter, multiplying it by a reduction factor &, we must
recompute the slack variables and keep s; + 7 > 0. The equation (7.21) is then used with
0 replaced with &6, where k is the iteration counter.
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7.2.4 Computing the barrier parameter u

Using (7.7b), a value of x could be obtained using —(s; + 7)\;, for any 7. Alternatively, we
can choose p as
—\'(s +Te)
=0,—, 7.23
=0y m ( )
where 0 < 9, < 1 is used to give a point which is closer to optimality than the current
approximation.

7.2.5 The BFGS formula

In [2| the authors introduces and analyzes a BFGS quasi-Newton interior point algorithm.
In [1] the strong convexity assumption of one of the objective and constraint functions is
relaxed to assume strong convexity of the Lagrangian.

To avoid the computational burden required by the Hessian H(x, \), in (7.9), a quasi-
Newton strategy (with the BFGS updating formula) was implemented in the algorithm.

To overcome a possible failure of the curvature condition, a damped strategy was im-
plemented as proposed in [25]. If the damped strategy still does not satisfy the curvature
condition, a skipping strategy is used.

7.2.6 Ordering and high ordering

In spite of system (7.11) having a unique solution, assuming that H is positive definite,
the several numerical ways of solving it can indeed result in different directions that can
affect the algorithm performance. We describe in the following subsections the two main
approaches for solving (7.11), primal ordering and dual ordering. A predictor-corrector
option is also implemented and may be selected.

Primal ordering

Assuming that H ! is positive definite and A~1S is diagonal with negative elements we
have that JT H='J —A~1S is positive definite. The primal ordering is obtained from system
(7.11) by solving the first equation in order to the primal variables. We solve the system
for Az, As and A\ using:

(JTH' T - A'SYAN=A""y—p—J'H o (7.24a)
by a modified Cholesky factorization,
Az =H Yo+ JAN) (7.24b)
and

As=—AN"1(SAN+7). (7.24¢)
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Dual ordering

Assuming H to be positive definite and noting from equation (7.7b) that the Lagrange
multipliers are negative we have that H — JS 'AJ7 is positive definite. The dual ordering
is obtain by solving the system (7.11) for the dual variables in the last equation. We solve
the system (7.11) for Az, As and A\ using:

(H— JST'AJT)Az = =V f + JS™ " (Ap — pe) (7.25a)
by a modified Cholesky factorization,
As=—p—J Az (7.25b)
and
AN = —S7H(AAs + 7). (7.25¢)

Predictor corrector

Mehrotra [24] proposed a predictor-corrector method for interior point applied to linear
programming. The algorithm consists of computing two directions, the predictor and
corrector, in the same iteration, both based on only one factorization. In [5] the authors
describe an extension to the Mehrotra predictor-corrector method to multiple corrections in
the context of linear and convex quadratic programs and the relation between the composite
Newton method and the multiple predictor-corrector methods is established. In [18, 12] the
authors study the use of multiple correction steps for the linear case. In [31] the authors
describe the primal ordering, dual ordering and the predictor-corrector to the nonlinear
case. The predictor-corrector proposed for NLP may not produce a descent direction for
the [5 merit function and so the algorithm proposed switchs to the standard direction if
the penalty parameter increases too much or the step length is too short.

The predictor-corrector implemented herein first solves the unperturbed Newton system

H(z,A\) 0 —J(x) Ax, o
0 -A =S As, | = | SAe (7.26)
—JT(z) -1 0 AN, p
for the predictor direction Az,, As, and A),, using the dual ordering.
The predictor-corrector step, for the i correction (i = 1,..., my,) is then obtained from
the perturbed Newton system
H(z,A) 0 —J(2)\ [Az, o
0 -A =S Ast, | = | SAe+ pe+ ASTIANT e (7.27)
—JT@) —I 0 AN, p

where AS*' AA"" are diagonal matrices with elements As) ' and AN ' respectively

and ASY% AA® are diagonal matrices with elements As,, A\, respectively.
The algorithm is described in the following way.
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Algorithm 19 Predictor-Corrector

Step(a) Solve system (7.26) to obtain the predictor direction Ax,, As, and AN, using the
following formulae

(H—JS'AJT) Az, = =V [+ JS 'Ap (7.28a)
As, = —(p+ J Az,) (7.28Db)
AN, = =S (AAs, + SAe) (7.28c¢)

Step(b) Fori=1,...,my. do

maz A izl r S+Te OémazASizl
Step(b.1) Compute p = (+ ) ( tret L ), with Am = Az, As
As,, A)\O = A\, and Qe zs the maximum step szze allowed gwen by

(7.20).

Step(b.2) Solve system (7.27) to obtain the predictor-corrector direction Az},
Ash, and AN, using the following formulae

(H—JS'AJT) Az, =
—Vf+JS (Ap— pe— AS;TANe)  (7.29a)

Ast,=—(p+J"Az),) (7.29Db)
AN, = =57 (AAs), + SAe + pe + AS)TAN te) (7.29¢)

Step(c) continue with Ax = Axpe”, As = Aspd and AN = ANp”.

Proposition 7.2.1 If x is a feasible solution to problem (7.1) then the predictor-corrector
direction obtained by solving (7.27) may not be a descent direction to the ly merit function
(7.15).

Proof. [46, Proposition 4.1] =

7.2.7 Computing the integrals

The integrals are computed in the same way as for the Penalty and SQP methods. See
Section 5.5 for a description and Section 5.6 for the options.
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7.2.8 Stopping rule

We measure proximity to the solution by means of the primal and dual infeasibility. The
algorithm will stop with a primal-dual solution if

ol < 6y (7.30)
and

lolly < 4. (7.31)

7.2.9 A watchdog technique

To overcome a possibly Maratos effect a second order correction or a watchdog technique
could be used. In this particular case of constraints transcription the Jacobian can be a
null matrix, and a second-order correction is unappropriate. A watchdog technique was
implemented.

The watchdog technique consists of allowing an increase on the merit function for a
given number of iterations, before forcing a decrease.

The watchdog technique can be describe by the following algorithm.

Algorithm 20 (watchdog technique)
Step (a) If k =0 then let watch=0.
Step (b) Compute of, . by formula (7.20).

max

Step (¢) If watch<watchmax

then Let oFtl = ok +oF = Azk sF1 = sk +ak Ask and \NFF1 = \F +aF  ANE
If o™+ M b, BF) — o(a*, %5 b, BF) <0
then Save xFL sFHL ARFLAgk  Ask ANE of - BE BF and p(aF L) sFTL uk ) BF).
Set watch=0 and go to Step (f).
else If watch=0
then Save z%, ¥, Ne, Axk Ask AN ok BF BF and ¢(z*, s%; i, BF).
Let watch=watch+1. Go to Step (f)
else Restore z*, s, Mo, AxF Ask, ANk, of Bk ¢(aF, s%; uk, BF) and B*. Let
o = 0‘%# and go to Step (d)

Step (d) Compute ¥+t using Algorithm 18.
Step (e) Compute of such that ¢(x**+t, sk k. BEFY) —g (2, %5 ¥, pFH1) < 0, with 2%+ =

¥+ aFAzk, sk = sk £ oFAsP and \FTT = NF £ oF AN Save oFFT, shHT MR
k k ko ok k+1 Rk k1 k+1. k ghktl
Ax® As® AN o BT BE and ¢(at T s R gETL).

m

Step (f) Continue.
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7.2.10 Jamming and stability

The S~! matrix can produce some numerical instability in the solution of the linear system
7.25 (see [48]) when driven to zero too fast. A strategy described in [4] was implemented,
ie.,

s¥ =max {s¥, 107 — 7} . (7.32)

This strategy has proven to give better results than the harmonic average suggested in [4].

7.3 The full algorithm

We present in this section the full primal-dual interior point algorithm.
Algorithm 21 The full implemented algorithm.

Step (a) Given 2°, €, 7, 6, §,, and ;.

Step (b) Compute 89, i = 1,...,m using (7.21). Compute \?, i = 1,...,m using (7.22).
Let k= 0.

Step (c) Let yeps = z* be the last y computed for a given e.
Step (d) Compute or update pu* using (7.23).
Step (e) Check the stopping criteria described in Subsection 7.2.8. If the stopping criteria

is satisfied then if there is a sufficient difference between yeps and x* then decrease
€, T, update the slack variables and continue, otherwise stop.

Step (f) Update B* by a BFGS formula. If k = 0 then B*¥ =Identity matrix.

Step (g) Solve the KKT system to obtain the search direction (Az*, As* ANF), using (7.25).
Step (h) Compute 3* as described in Algorithm 18

Step (i) Compute ok as described in (7.20).

max

Step (j) Use a backtracking strategy to find o that reduces the merit function (7.15) or
(7.16).

Step (k) Compute x¥+1, s¥T1 and M1 as in (7.14).

Step (1) Go to Step (d).
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7.4 Interior Point method options

In the computation of the integrals the options of Section 5.6 are still valid for tuning the
integral computation. The options to the Interior Point method are presented in Table 7.1.

The columns in Table 7.1 have the same meaning as in Table 4.1 and “String” in the
column “Type” means that the option should be a sequence of characters starting with a
letter.

7.5 The Interior Point method output

The Interior Point method will append the line
& iter & nlag & nmer & fx & ||p||2 & ||o|]2 & p & € \\

to the output file. “iter” is the number of iterations; “nlag” is the number of the Lagrangian
function evaluations; “nmer” is the number of merit function evaluations; “fx” is the ob-
jective function value in the solution found; “||p||s” and “||o||s” are the primal and dual
infeasibility and “p”/“€” is the last /e used.

The same comment of Section 4.4 about building a IXTEX tabular environment applies.
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Option

Type

Default

Description

int_merit

damped

int _maxit
int_prec

int__eps
int__epsfactor
int _epslimit

reset

scale

theta
delta
watchmax
watchdog

bfgsskip

int_ord

int_corr

String

Integer

Integer
Double

Double
Double
Double

Integer

Integer

Double
Double
Integer

Integer

Double

String

Integer

ml

1.0

0.1

1078

mi for the Iy merit function (7.15). m2 for
the augmented Lagrangian merit function
(7.16).

0 if no damped BFGS updating formula
is used. For any other integer value the
damped formula is used. See Subsection
7.2.5 and [25].

Maximum number of iterations allowed.
Primal and dual infeasibility measures in
the stopping criteria d;.

Initial smoothing parameter for differen-
tiability €. 79 = €.

Reduction factor for the smoothing pa-
rameter. &, .

Minimum bound allowed for the smooth-
ing parameter.

0 if no reset of the approximation of the
Hessian if requested. Any integer value
will make B* =identity matrix if k is a
multiple of n.

0 if no scaling is needed. Any value oth-
erwise. If the norm of the direction is not
in range [1072,10%] the direction will be
scaled to fit the values.

Value used to avoid proximity of the s
variable to the bound, € in (7.21).
Scaling factor in computing the barrier pa-
rameter, J,, in (7.23).

Maximum number of consecutive in-
creases in the merit function.

0 for no watchdog strategy and any other
value otherwise.

The BFGS update will be skipped if cur-
vature condition is less than the given
value, 9.

p for Primal ordering, d for Dual ordering
and pc for Predictor-Corrector.
number of corrections done
predictor-corrector direction, m,,.

in the

Table 7.1: Options for the quasi-Newton interior point method
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Chapter 8

SIPAMPL

The SIPAMPL was made in the end of 1999. With SIPAMPL we aimed to create a
database with SIP problems, to use the automatic differentiation procedures in AMPL
and to provide an interface to connect any SIP solver. The database provides several
already coded SIP problems and the natural modeling language of AMPL allows an easy
extension of the database. We use Section 8.1 for a brief description of the database and
describe how a SIP problem can be coded in the AMPL modeling language. To make the
database useful we have made an interface to connect the database to any solver. Section
8.2 describes the SIPAMPL interface. The technical report [36] is used as the SIPAMPL
manual and can be obtained together with the SIPAMPL software, from the web page
indicated in the reference [36].

8.1 SIPAMPL database

Since 1999 we have been coding all the problems that were found in the literature related
to SIP. As a good practice we have coded, as a comment, in the beginning of each file
(problem model) the reference from where we have obtained the problem. We have used,
in most cases, the name of the first author to identify the problem. The existence of this
database will also allow the forthcoming authors to mention only the problem name under
the SIPAMPL database, avoiding the need of writing its mathematical formulation which
sometimes leads to mistakes.

To codify a SIP problem in the AMPL modeling language is an easy task and no
derivatives are requested. AMPL automatic differentiation is used to provide first and
second derivatives.

The database has now more than 130 coded problems and we expect to extend the
database whenever possible. We welcome references to SIP problems or SIP problems
already coded.

95
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As an example of a coded problem consider the following SIP problem
2 2
£$3a+%
st.  at+ast? <0
—10 SZL‘l + Zo S 10
vt € [0,1]

The corresponding (SIP) AMPL code is presented below

B
# Objective: Quadratic

# Constraints: Linear

B s S s S R S
# Sample problem in the user manual

# aivaz@ci.uminho.pt 27/12/99

B

var x {1..2};

# infinite variable name must start with t
var t;

#objective function
minimize fx:
x[1]~2+x[2]"2;

# infinite constraint, so name must start with t
subject to tcons:
x[1]*t+x[2]*t72 <= 0;
# finite constraint therefore name must not start with t
subject to constraint:
-10 <= x[1]+x[2] <= 10;

# bounds on t var
subject to bounds:
0 <=t <=1;

#it##H S S S S S S TS
# End of Problem codification #
#itd S RS H S S S HSE HE EHS E H S

# do not forget to write .col and .row files
option mysolver_auxfiles rc;
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# this problem has no initial guess (starting point)
option reset_initial_guesses 1;

# change solver

option solver mysolver;

# solve problem

solve;

HUHHHHHHHHBHA R H

# Solution found #

HUtH A HAHHAH A HAH RS

printf "Solution found\n";
display x;

display fx;

mysolver is the SIP solver and may be replaced to meet ones requirement (see Section
9.4 for more details on how to change it).
The codification requests for coding SIP problems in AMPL are:

e Infinite variables are coded with names starting with t and conversely any variable
names starting with t are considered infinite;

e Infinite constraints are coded with names starting with t and conversely any con-
straint names starting with t are considered infinite;

e With the option auzfiles the .row and .col AMPL files must be provided.

The robotics problems codified use the bspline.dl1l dynamic library. The dynamic
library must be loaded before using these problems (see [36] on how to load it).

8.2 SIPAMPL interface

The SIPAMPL interface extends the AMPL interface, allowing the user to evaluate the
finite /infinite constraints and access to other data related with the SIP problems (number
of finite variables, number of infinite variables, etc). The SIPAMPL interface calls the
AMPL interface routines and with the extra information provided by the .row and .col
files it fills the data in Table 8.1 with the appropriate values. In table the columns refer to:
“Variable”, the variable name and type; “Description”, a brief description for the variable
and “SIP”, the notation used in the SIP definition (2.1).

A brief description of the SIPAMPL functions which support the SIP evaluation func-
tions follows. Please note that gradients, Hessians and Jacobians are always in dense
format, defined in a FORTRAN way (AMPL dense format).

e sip_extractx - Extracts the finite component from the initial complete variable
array.
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Variable Description SIP
int nxsip number of finite variables n
int ntsip number of infinite variables P
int nxsipc number of finite constraints q
int ntsipc number of infinite constraints m

real *XBU | Array of upper bounds on finite variables
real *XBL Array of lower bounds on finite variables
real *TBU Array of upper bounds on infinite variables o
real *TBL Array of lower bounds on infinite variables B;
real *XCBU | Array of upper bounds on finite constraints

real *XCBL | Array of lower bounds on finite constraints

real *TCBU | Array of upper bounds on infinite constraints
real *TCBL | Array of lower bounds on infinite constraints

Table 8.1: Data provided by the SIPAMPL interface

sip_extractt - As in sip_extractx but for the infinite component.

sip_joinxt - Joins the finite and infinite components back into the complete variable
array.

sip_init - Initializes the variables for the problem, allocates the arrays for the
bounds and copies the bound values to the arrays. This function looks for variable
and constraint names in order to keep track of the finite and infinite positions in
the complete variable array (keeping track of the = and ¢ constraints position is also
needed in order to be able to compute the original constraint position from an z or
t constraint position).

sip_free - Frees the memory allocated during the call to sip_init. Only the mem-
ory is freed, the variables in the sip data structure are not re-initialized.

sip_objval - Evaluates the objective function.

sip_objgrd - Evaluates the objective function gradient vector.
sip_objhes - Evaluates the objective function Hessian matrix.
sip_conval - Evaluates the constraints.

sip_jacval - Evaluates the constraint Jacobian.

sip_conxval - Evaluates a finite constraint.

sip_contval - Evaluates an infinite constraint.

sip_conxgrd - Evaluates a finite constraint gradient.
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e sip_contgrd - Evaluates an infinite constraint gradient.
e sip_conxhes - Evaluates a finite constraint Hessian matrix.

e sip_conthes - Evaluates an infinite constraint Hessian matrix.

The AMPL interface routines may also be called.

29
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Chapter 9

The select tool

In linear/nonlinear semi-infinite programming, as in finite programming, the algorithms
developed are sometimes limited or appropriate to specific problem structure. For example,
to solve a quadratic problems one should use (to get the best performance) an algorithm
suited for quadratic programming. As SIPAMPL is a generic database, we may want to
select some problems with specific characteristics from all the database problems. The
select tool allows this selection based on the characteristics printed in Table 9.1. In table:
“Option” is the name of the option which can be changed; “type” is the type of data the
select tool is waiting for. In list the select tool will present the allowed values in a list
and waits for a selection. In range the select tool will ask for two values, one for the lower
bound and the other for the upper bound; “allowed values” are the allowed values for the
selected option; “default” are the default values for the option and “SIP” is the terminology
in the problem definition (2.1). The next section presents the installation instructions.
Section 9.2 is devoted to the implementation details. Section 9.3 gives a session example
of the select tool.

9.1 Installing the select tool

At this moment the select tool is available for a Linux and a Windows Operating System
and makes some operating systems calls (to read database directory, invoke AMPL binary,
etc) and so portability is compromised (but porting to other operating system should be
easy). For the Windows version we used the Microsoft Visual C/C+-+ compiler.

The select tool is provided in only two files: select.h and select.c. makefile and
makefile.vc are also provided and to produce the select binary one just have to type
make or nmake -f makefile.vc in the select directory.

9.2 Implementation details

The select tool trusts the information about the objective and constraints type coded in
the problem by the user. The commented lines

61
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Option

type

allowed values

default

SIP

Objective type

Constraints type

Number finite variables
Number infinite variables
Number finite constraints
Number infinite constraints
Limits finite variables

Limits infinite variables

Initial guess

list

list

range
range
range
range
list

list

list

Linear

Quadratic

Polynomial

Generic

All type

Linear

Quadratic

Polynomial

Generic

All type

Nonnegative integers

Nonnegative integers

Nonnegative integers

Nonnegative integers

Both limits finite

Lower limits finite

Upper limits finite

None limits finite

Everything

Both limits finite

Lower limits finite

Upper limits finite

None limits finite

Everything

With initial guess

Without initial guess

With or without
initial guess

All type

All type

[0,+00]
|0,-+oc]
|0,+0¢]
[0,+00]
Everything

Everything

With or without
initial guess

3@’@3

Table 9.1: Questionable problems characteristics
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AMPL AMPL

interface

SIP database

SIPAMPL

interface

Figure 9.1: Interconnections between select and SIPAMPL

# Objective: Quadratic
# Constraints: Linear

in the example shown (Section 8.1) are very important since they provide the only infor-
mation available for the select tool about the objective and constraints type.

Recall that z;e’ < 0 is a linear constraint in SIP, but AMPL will consider it as nonlinear
because of the e factor.

select will extract the remaining information from the .mod file in the database direc-
tory. To call the STIPAMPL interface the select tool needs the files .nl, .col and .row.
To produce them select copies the .mod file to a temporary file and replaces the solve;
AMPL command with

option auxfiles rc;
write gtmpfile;

The great amount of time spent for processing a file in the database is due to the
great amount of time spent in writing this temporary file and the processing time used
by the AMPL binary to obtain the .nl, .col and .row files. This appearing drawback is
compensated with the unneeded work of the user in the codification process and it is not
subject to mistakes (in counting variables, etc).

The interconnections for the select tool can be seen in the diagram of Figure 9.1.



64 CHAPTER 9. THE SELECT TOOL

9.3 A session example

To show how a user can select a problem from the SIPAMPL database we present an
interactive session with the select tool.

The user starts by setting the environment AMPLFUNC variable to load the bspline.d1l
dynamic library (needed to the robotics problems in the SIPAMPL database) and then in-
voking the select tool with the ./select command. The default database directory and
AMPL binary are accepted as being correct. A quadratic objective function with only
one infinite variable will be requested. No finite simple bounds on the finite variables are
requested. After the select tool having found the problems in the database, that match
the user options the file select.res is written which contains all the found problems.

C:\AMPL\SOLVERS\sip\tools>set AMPLFUNC=..\nsips\bspline.dll

C:\AMPL\SOLVERS\sip\tools>.\select -x
Select v2.0 tool for SIPAMPL

Expert mode enabled

Default database directory: ..\sipmod
New database directory [CR=Accept default]:
Using database directory: ..\sipmod

Default deposit directory: ..\sipnl
New deposit directory [CR=Accept default]:
Using deposit directory: ..\sipnl

Full path for AMPL binary: ..\ampl.exe
New full path for AMPL binary [CR=Accept default]:

Using ..\ampl.exe when executing AMPL

Specified Options:

1) Objective Type : All type

2) Constraints Type : A1l type

3) 0 <= Number of finite variables <= +Infinity
4) 0 <= Number of infinite variables <= +Infinity
5) 0 <= Number of finite constraints <= +Infinity
6) 0 <= Number of infinite constraints <= +Infinity
7) Finite variables: Everything

8) Infinite variables: Everything

9) Initial guess: :  With or without initial guess

Enter option number to change option [CR=End]:1
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Processing option 1
New objective type
1) Linear
2) Quadratic
3) Polynomial
4) Generic
5) All type

Option:2

Specified Options:

1) 0Objective Type : Quadratic

2) Constraints Type : A1l type

3) 0 <= Number of finite variables <= +Infinity
4) 0 <= Number of infinite variables <= +Infinity
5) 0 <= Number of finite constraints <= +Infinity
6) O <= Number of infinite constraints <= +Infinity
7) Finite variables: Everything

8) Infinite variables: Everything

9) Initial guess: : With or without initial guess

Enter option number to change option [CR=End]:4
Processing option 4

New number of infinite variables

Lower bound [CR=keep value]:

Upper bound [CR=keep value, INF=+Infinity]:1

Specified Options:

1) 0Objective Type :  Quadratic

2) Constraints Type : A1l type

3) 0 <= Number of finite variables <= +Infinity
4) 0 <= Number of infinite variables <= 1
5) 0 <= Number of finite constraints <= +Infinity
6) O <= Number of infinite constraints <= +Infinity
7) Finite variables: Everything

8) Infinite variables: Everything

9) Initial guess: :  With or without initial guess

Enter option number to change option [CR=End]:7
Processing option 7

Finite variables simple bounds

1) Both limits finite

2) Lower limit finite

3) Upper limit finite
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4) None limit finite
5) Everything
Option:4

Specified Options:

1) Objective Type : Quadratic

2) Constraints Type : A1l type

3) 0 <= Number of finite variables <= +Infinity
4) 0 <= Number of infinite variables <= 1
5) 0 <= Number of finite constraints <= +Infinity
6) 0 <= Number of infinite constraints <= +Infinity
7) Finite variables: None limits finite

8) Infinite variables: Everything

9) Initial guess: : With or without initial guess

Enter option number to change option [CR=End]:

21 file(s) found with specified options

Do you want me to:
1) Save results to file select.res
2) Save results to a batch file select.bat
3) Save results to a M-file sip_run.m
4) Print results to stdout
5) Just quit
Option:1

21 file(s) found with specified options

Do you want me to:
1) Save results to file select.res
2) Save results to a batch file select.bat
3) Save results to a M-file sip_run.m
4) Print results to stdout
5) Just quit
Option:5

C:\AMPL\SOLVERS\sip\tools>
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9.4 Changing the solver name in the database problems

In each problem file the nsips solver is selected by issuing the AMPL command option
solver nsips;. If a user wishes to write his own solver, then one of the two following
actions must be taken:

e the user solver must be called nsips or renamed so.
e the user must edit all the files to change nsips for his own solver name.

To abbreviate the second action we give some bash shell commands to do this in an
automatic form

for 1 in whatever files you want to change solver
do

sed s/nsips/newsolver,/ < $i > $i.new

done

This commands will read the files whatever files you want to change solver and
will write the new files whatever.new files.new you.new want.new to.new change.new
solver.new.

Note that the sed command will replace every word nsips by newsolver. If the word
newsolver exists in the file you may experience some trouble in changing again the solver
name and so the name of any solver should be a reserved word.
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